Higher tier Paper 1 – Non-calculator

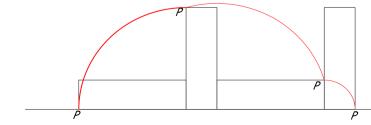
Question	Working	Answer	Mark	AO	Notes
1	$80 \div (7-2) (=16)$	£48	P	3.1d	P1 for a strategy to start to solve problem,
	'16' × 3				e.g. $80 \div (7-2) (=16)$
			P	3.1d	P1 for full process to solve problem,
					e.g. '16' × 3
			A	1.3b	A1 cao
2 (a)		84 to 85	P	2.3a	P1 for interpreting the data and deciding to draw a
					graph or a table to represent the data
			P	2.3b	P1 for a correct process to label axes or communicate
					the data connections
			P	3.1d	P1 drawing in an appropriate line of best fit or model
					the problem as a linear function in time
			A	1.3b	A1 for correctly reading off the value at 2030 in the
					range 84 to 85 or using their linear function correctly
					to give an answer in this range
(b)			C	3.4b	C1 for a valid comment eg cannot assume a linear
					relationship
			С	3.4b	C1 for a valid comment eg that one cannot predict
					accurately with a date so far away from the original
					data
3 (i)		$2^3 \times 3 \times 5$	В	1.3a	B1 cao
(ii)		$2^4 \times 3^3 \times 5^2$	В	1.3a	B1 cao
4		locus	С	2.3b	C1 for method of showing a rotation about one fixed
		(see diagram at			point, e.g. quarter circle with radius PC centre C or
		end)			radius PB centre B or PA centre A
		Ciluj	C	2.3b	C1 for understanding it is a continuous process, e.g.

Que	estion	Working	Answer	Mark	AO	Notes
						quarter circle with radius PC centre C and radius PB
						centre B and radius PA centre A
				C	2.3b	C1 for fully correct drawing
5	(a)	3x + 5y = 4	x = 3, y = -1	M	1.3b	M1 for correct method to eliminate one variable
		10x - 5y = 35		M	1.3b	M1 for correct method to find second variable
		13x = 39		A	1.3b	A1 for $x = 3$ and $y = -1$
5	(b)	x + 5 > 8	x = 4	В	1.3b	B1 for $x > 3$ or for $x < 5$
		x > 3		В	1.3b	B1 for $x > 3$ and for $x < 5$
		2x - 3 < 7		В	1.3b	B1 for $x = 4$ from $x > 3$ and $x < 5$
		2x < 10				
		<i>x</i> < 5				
6	(a) (i)	$4 \times 3 \times 2000^2$	48 000 000 km ²	M	1.3a	M1 for use of $4\pi r^2$ with either π
						or <i>r</i> rounded to 1 significant figure
				A	1.3a	A1 accept 50 000 000 km ²
	(ii)			С	3.4a	C1 for appropriate evaluation of method, e.g. 3 and
						2000 both less than true values
6	(b)	$9.75 \times 10^7 \times 1000 \div (3 \times 10^8)$	325 s	M	1.3b	M1 for use of distance ÷ time
				M	1.3b	M1 for consistent units
				A	1.3b	A1 cao
7		Shaded area in B	$\frac{19}{40}$	P	3.1b	P1 for strategy to start to solve problem, e.g. $1 - \frac{3}{5}$
		2 1 3 1	40			5
		$=1-\frac{2}{5}-\frac{1}{8}$ or $\frac{3}{5}-\frac{1}{8}$		P	3.1b	or $1 - \frac{7}{8}$ or correct equation, e.g. $x + \frac{1}{8} = \frac{3}{5}$
				1	5.10	
						P1 for setting up a calculation that will lead to the
						correct answer, e.g. $1 - \frac{2}{5} - \frac{1}{8}$ or $\frac{3}{5} - \frac{1}{8}$ or $\frac{7}{8} - \frac{2}{5}$
				A	1.3b	A1 cao

Question	Working	Answer	Mark	AO	Notes
8	4.5 5 _ 22.5	18.75 (%)	P	3.1d	P1 for process to find amount of amount of land for
	$\frac{\overline{15} \times \overline{8} - \overline{120}}{\frac{22.5}{120} \times 100}$		P	3.1d	wheat, e.g. $\frac{4.5}{15} \times \frac{5}{8}$ P1 for complete process, e.g. $\frac{22.5}{150} \times 100$
			A	1.3b	e.g. $\frac{120}{120} \times 100$ A1 18.75 oe
9		84°	P	3.1b	P1 for process to find size of interior angle of
			_		hexagon or pentagon
			P	3.1b	P1 for establishing a correct process to find angle JAF , e.g. $JAF = (180 - 108) \div 2$
			P	3.1b	P1 for a complete process to find angle <i>BAJ</i>
			A	1.3b	A1 cao

Question	Working	Answer	Mark	AO	Notes
10	$\frac{\text{Method 1}}{2200 - 1700 = 500}$	23000	P	2.3a	P1 for process to interpret information, e.g. $2200 - 1700 = 500$ oe or use $y = mx + c$ or start
	30000 - 0000 = 10000 For every £100 increase in wage the increase in sales = £2000		P	3.1d	to draw graph P1 for process to build on initial strategy, e.g. 2200 - 1700 = 500 and 30000 - 20000 = 10000 oe use proportional increase or process to find
	1850 - 1700 = 150 Difference in sales = $1.5 \times 2000 = 3000$		P	3.1d	m and $cP1 for strategy to use found information,e.g. 1000 \div 5 or use values of m and c or use straightline graph$
	$20000 + 3000$ $\underline{\text{Method 2}}$ $\text{Use } y = mx + c$		A	1.3b	A1 cao
	$m = \frac{2200 - 1700}{30000 - 20000}$				
	$c = 2200 - 30000 \times 0.05 = 700$ $1850 - 700$				
	When $y = 1850$, $x = \frac{1850 - 700}{0.05}$ Method 3				
	Draw a graph				

Qı	iestion	Working	Answer	Mark	AO	Notes
11	(a)		В	В	1.1	B1 cao
11	(b)(i)		$\frac{1}{4}$ of original force	P	3.1c	P1 for $F = \frac{k}{d^2}$ and $F = \frac{k}{(2d)^2}$ (d may be numerical) or 'Force gets smaller'
				P	3.3	P1 for full interpretation of results rather than a specific distance, e.g. $\frac{1}{4}$ of original force
	(b)(ii)	$40 = \frac{k}{3^2} \ (k = 360)$	3.6 N	M	1.3b	M1 for $40 = \frac{k}{3^2}$
		$360 \div 10^2$		M	1.3b	M1 for complete method, e.g. $360 \div 10^2$
				A	1.3b	A1 cao
12	(a)	$g(1-5\times1) = 1 + 5\times(-4)$ or $1 + 5f(1) = 1 + 5\times(-4)$	Shown with working	P P	2.2 2.2	P1 for process to begin expansion, e.g. $(1 - 5 \times 1)$ or $1 + 5f(1)$ P1 for full process to stated expression
12	(b)	$f^{-1}(x) = \frac{1-x}{5}$ $f^{-1}(x) = \frac{1-x}{5}$	Proof	P	2.4b	P1 for start to proof, e.g $f^{-1}(x) = \frac{1-x}{5}$ or
		$f^{-1}(x) + g^{-1}(x) = \frac{1-x}{5} + \frac{x-1}{5}$ $= \frac{1-x+x-1}{5} = 0$		P	2.4b	$g^{-1}(x) = \frac{x-1}{5}$ P1 For continuation of proof, e.g. $g f^{-1}(x) = \frac{1-x}{5}$ and
						$g^{-1}(x) = \frac{x-1}{5}$ P1 for a complete proof with all steps shown
				P	2.4b	1 1 for a complete proof with all steps shown


Question	Working	Answer	Mark	AO	Notes
13	$0.5(u+2u)\times 12 + 2u\times 10$	Show	P	2.3a	P1 for process to interpret information, e.g. draw graph
			P	2.2	P1 for process to identify a strategy, e.g. statement that distance is area under graph or one correct area
			P	2.2	P1 for process to find complete area, e.g. $0.5(u + 2u) \times 12 + 2u \times 10$
			P	2.2	P1 for all steps given leading to result 38 <i>u</i>
14 (a)	4 4	16	P	3.1c	P1 for process to calculate probability of RR, e.g.
	$\frac{4}{6} \times \frac{4}{6}$	$\frac{16}{36}$	A	1.3a	$\frac{4}{6} \times \frac{4}{6}$ or sample space with all elements correctly
					identified A1 oe
14 (b)	$3 \times \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$	$\frac{48}{216}$	P	3.1d	P1 for process to calculate probability of RRL in any one order, e.g $\frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$
			P	3.1d	P1 for process to calculate correct probability, e.g. $3 \times \frac{2}{6} \times \frac{2}{6} \times \frac{4}{6}$
			A	1.3b	A1 oe
14 (c)		Yes + reason	С	2.4a	C1 Yes because an even number of +1s and -1s cannot give the answers +3 or -3

Question	Working	Answer	Mark	AO	Notes
15	∠ <i>DOC</i> = 46°	10°	P	2.2	P1 $\angle DOC = 2 \times 23^{\circ}$ (angle at centre is twice angle
	$\angle OCD = (180^{\circ} - 46^{\circ})/2$ $\angle ADC = 100^{\circ}$		P	2.2	at circumference) P1 \angle $OCD = (180^{\circ} - '46'^{\circ})/2$ (base angles of isosceles triangle OCD) and \angle $ABC = 180^{\circ} - 100^{\circ}$ (angles on a
	$\angle DCA = 57^{\circ}$ $\angle OCA = 67^{\circ} - 57^{\circ}$		P	2.2	straight line sum to 180°) P1 $\angle ADC = 100^{\circ}$ (opposite angles of a cyclic quadrilateral sum to 180°)
			P	2.2	P1 $\angle DCA = 180^{\circ} - '100'^{\circ} - 23^{\circ}$ (angle sum of a triangle is 180°)
			С	1.1	C1 for complete chain of reasoning to find angle <i>OCA</i> seen with 10° and at least 1 circle theorem
			С	1.1	quoted C1 dependent on all previous marks for full reasons at each stage

Question	Working	Answer	Mark	AO	Notes
16 (i)			M	1.3b	M1 for $(x-2.5)^2 - (2.5)^2 + 10$ or attempt to find points to plot – must have at least 3 correct points evaluated
			A	1.3b	A1 for $(x - 2.5)^2 + 3.75$ or parabola with minimum marked at $(2.5, 3.75)$
			С	2.3b	C1 for parabola drawn with minimum in 1st quadrant or <i>y</i> intercept at (0, 10)
			С	2.3b	C1 for parabola drawn with minimum in 1st quadrant at $(2.5, 3.75)$ and y intercept at $(0, 10)$
(ii)		Explanation	С	2.4a	C1 for a start to explanation, e.g. $f(x + 2) - 3$ is a translation of $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$ or attempt to draw graph of $f(x + 2) - 3$ or Graph of $y = f(x + 2)$ and $y = 3$ drawn or $(x + 2)^2 - 5(x + 2) + 10 - 3 = 0$ $(x^2 - x + 1 = 0)$
			С	2.4a	C1 for a convincing explanation, e.g. new minimum at $(0.5, 0.75)$ so graph will not cross x axis or no interception between $y = f(x + 2)$ and $y = 3$ or demonstration that $x^2 - x + 1 = 0$ has no real roots

Question	Working	Answer	Mark	AO	Notes
17	$(2x-1)^2 = (x+1)^2 + (x-1)^2 - 2(x + 1)(x-1)\cos 120^{\circ}$ $4x^2 - 4x + 1 = x^2 + 2x + 1 + x^2 - 2x$ $+ 1 - 2(x^2 - 1) \times (-0.5)$ $x^2 - 4x = 0$	1 <u>5</u>	В	1.1	B1 for correct statement of cosine rule or $\frac{1}{2}ab\sin C$ or value of cos 120° or value of sin120°
	$x = 4$ $x = 4$ Area = $0.5 \times 3 \times 5 \times \sin 120^{\circ}$		P	3.2	P1 for strategy to start to solve problem, e.g. $(2x-1)^2 = (x+1)^2 + (x-1)^2 - 2(x+1)(x-1)\cos 120^\circ$
			P	3.2	P1 for strategy to reduce to a quadratic equation, e.g. $x^2 - 4x = 0$
			M	1.3b	M1 for method to solve quadratic equation
			P	3.2	P1 for attempt to use 0.5 <i>ab</i> sin <i>C</i> with numeric or
			P	3.2	algebraic values substituted
			A	1.3b	P1 for process to equate to $k\sqrt{3}$
					A1 for $k = \frac{15}{4}$ oe

Question 4

