



# Year 11 2024 Mathematics 2025 Unit 24 Booklet – Part 1

**HGS Maths** 





**Dr Frost Course** 



# Name:

# **Class:**





# Year 11 2024 Mathematics 2025 Unit 24 Booklet – Part 2

**HGS Maths** 





**Dr Frost Course** 



# Name:

# **Class:**

### Contents

- 1 Equations of Circles and Tangents
- 2 Advanced Equations of Circles (L2FM Only)
- 3 Advanced Simultaneous Equations
- 4 Advanced Sequences
- 5 <u>Limiting Values of Sequences (L2FM Only)</u>
- 6 <u>Algebraic Proof</u>
- 7 Advanced Vectors

# **1** Equations of Circles and Tangents

| Worked Example                                                                                                  | Your Turn                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Determine whether the point with coordinates $(-5, 7)$ lies on with circle with the equation $x^2 + y^2 = 85$ . | Determine whether the point with coordinates $(6, -8)$ lies on with circle with the equation $x^2 + y^2 = 100$ . |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |
|                                                                                                                 |                                                                                                                  |

| Worked Example                                                                                                        | Your Turn                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Worked Example         Find the radius of the circle with equation:         a) $x^2 + y^2 = 196$ b) $x^2 + y^2 = 326$ | Your TurnFind the radius of the circle with equation:a) $x^2 + y^2 = 169$ b) $x^2 + y^2 = 362$ |
|                                                                                                                       |                                                                                                |

| Worked Example                                                                                        | Your Turn                                                                                        |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| <b>Worked Example</b><br>Find an equation of the circle with radius $3\sqrt{5}$ and centre $(0, 0)$ . | <b>Your Turn</b><br>Find an equation of the circle with radius $5\sqrt{2}$ and centre $(0, 0)$ . |
|                                                                                                       |                                                                                                  |



| Your Turn                                                                                          |
|----------------------------------------------------------------------------------------------------|
| The point $(-7, -2)$ lies on a circle centered on the origin.<br>Find an equation for this circle. |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |
|                                                                                                    |

| Worked Example                                                                                                                                                                          | Your Turn                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The circle below is given by the equation x<sup>2</sup> + y<sup>2</sup> = 16.</li> <li>a) Calculate its circumference, C.</li> <li>b) Calculate the shaded area, A.</li> </ul> | The circle below is given by the equation $x^2 + y^2 = 64$ .<br>a) Calculate its circumference, <i>C</i> .<br>b) Calculate the shaded area, <i>A</i> . |
| Give your answers correct to 2 decimal places.                                                                                                                                          | Give your answers correct to 2 decimal places.                                                                                                         |
|                                                                                                                                                                                         |                                                                                                                                                        |

|    | Worked Example                                                            |    | Your Turn                                                                  |
|----|---------------------------------------------------------------------------|----|----------------------------------------------------------------------------|
| a) | A circle has a circumference of $6\pi$ . Find an equation for the circle. | a) | A circle has a circumference of $12\pi$ . Find an equation for the circle. |
| b) | A circle has an area of $49\pi$ . Find an equation for the circle.        | b) | A circle has an area of $25\pi$ . Find an equation for the circle.         |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |
|    |                                                                           |    |                                                                            |

| Fill in the Gaps |             |      |         |               |                 |
|------------------|-------------|------|---------|---------------|-----------------|
| Equation         | Radius      | Area | Point 1 | Point 2       | Where is (3,7)? |
| $x^2 + y^2 = 25$ |             |      | (3,)    | (, 0)         | Outside         |
| $x^2 + y^2 = 50$ |             |      | (-5,)   | (,7)          |                 |
| $x^2 + y^2 = 65$ |             |      | (1,)    | (,7)          |                 |
|                  | 15          |      | (9,)    | (,0)          |                 |
|                  | $5\sqrt{5}$ |      | (-5,)   | (,11)         |                 |
|                  |             | 130π | (-7,)   | (,11)         |                 |
|                  |             | 2042 | (19,)   | (,11)         |                 |
|                  |             |      | (-4,)   | (8,11)        |                 |
|                  |             |      | (1,)    | (-7,11)       |                 |
|                  |             |      | (-7,)   | (, \sqrt{22}) | On the circle   |

| Worked Example                                                                                                                                      | Your Turn                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| The annulus below is formed of two circles centred on the origin. The equations of the circles are:<br>$x^{2} + y^{2} = 49$<br>$x^{2} + y^{2} = 16$ | The annulus below is formed of two circles centred on the origin. The equations of the circles are:<br>$x^{2} + y^{2} = 25$<br>$x^{2} + y^{2} = 4$ |
| <ul><li>a) Calculate the perimeter of the shaded shape.</li><li>b) Calculate the area of the shaded shape.</li></ul>                                | <ul><li>a) Calculate the perimeter of the shaded shape.</li><li>b) Calculate the area of the shaded shape.</li></ul>                               |
| Give your answers correct to 2 decimal places.                                                                                                      | Give your answers correct to 2 decimal places.                                                                                                     |

| Worked Example                                                                                              | Your Turn                                                                                                       |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| The diagram shows the circle with equation $x^2 + y^2 = 164$                                                | The diagram shows the circle with equation $x^2 + y^2 = 106$                                                    |
|                                                                                                             | P(5,9)                                                                                                          |
| A tangent to the circle is drawn at point A with coordinates (8, 10). Find an equation of the tangent at A. | A tangent to the circle is drawn at point $P$ with coordinates (5, 9). Find an equation of the tangent at $P$ . |
|                                                                                                             |                                                                                                                 |

# Fill in the Blanks Equartion Offport Tangent to a Circle

| Equation of<br>Circle      | Point on<br>Circle                      | Gradient of<br>Radius | Gradient of<br>Tangent | Equation of Tangent               |
|----------------------------|-----------------------------------------|-----------------------|------------------------|-----------------------------------|
| $x^2 + y^2 = 45$           | (3,6)                                   | 2                     | $-\frac{1}{2}$         |                                   |
| $x^2 + y^2 = 10$           | (3, -1)                                 | $m = -\frac{1}{3}$    |                        |                                   |
| $x^2 + y^2 = 68$           | (-2, -8)                                |                       |                        |                                   |
| $x^2 + y^2 = 25$           | (-4,3)                                  |                       |                        |                                   |
| $x^2 + y^2 = 73$           | (8,3)                                   |                       |                        |                                   |
| $x^2 + y^2 = \frac{53}{2}$ | $\left(\frac{5}{2},-\frac{9}{2}\right)$ |                       |                        |                                   |
| $x^2 + y^2 = 6$            | $\left(-2,\sqrt{2}\right)$              |                       |                        |                                   |
| $x^2 + y^2 = 100$          |                                         |                       |                        | $y = \frac{3}{4}x - \frac{25}{2}$ |

| Worked Example                                                                                                                     | Your Turn                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| A circle has equation $x^2 + y^2 = 65$<br><i>M</i> is the point on the circle with coordinates (-4, 7)<br>$M^{(-4,7)}$             | The diagram shows a circle with centre $(0, 0)$ and a tangent at the point $M(-7, 4)$                                              |
| The tangent to the circle at <i>M</i> intersects the x-axis at point <i>N</i> .<br>Work out the <i>x</i> -coordinate of <i>N</i> . | The tangent to the circle at <i>M</i> intersects the x-axis at point <i>N</i> .<br>Work out the <i>x</i> -coordinate of <i>N</i> . |

| Worked Example                                                                                                                        | Your Turn                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A circle has equation $x^2 + y^2 = 85$<br>M is the point on the circle with coordinates $M(6,7)$                                      | A circle has equation $x^2 + y^2 = 100$<br>A is the point on the circle with coordinates $A(-6,8)$<br>A(-6,8)<br>B<br>A(-6,8)<br>B<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O |
| The tangent to the circle at <i>M</i> intersects the <i>x</i> -axis at point <i>N</i> .<br>Work out the area of triangle <i>OMN</i> . | The tangent to the circle at <i>A</i> intersects the <i>x</i> -axis at point <i>B</i> .<br>Work out the area of triangle <i>OAB</i> .                                      |

# **Extra Notes**

## **3** Advanced Simultaneous Equations

| Worked Example                                                                                  | Your Turn                                                                         |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Worked Example         Solve the following pair of simultaneous equations: $xy = 2$ $y = x + 1$ | Your TurnSolve the following pair of simultaneous equations: $xy = 2$ $y = x - 1$ |
|                                                                                                 |                                                                                   |

| Worked Example                                                                                         | Your Turn                                                                         |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Worked Example         Solve the following pair of simultaneous equations: $x^2 + y^2 = 9$ $y = x + 3$ | Your TurnSolve the following pair of simultaneous equations: $xy = 2$ $y = x - 1$ |
|                                                                                                        |                                                                                   |
|                                                                                                        |                                                                                   |

| Worked Example                                                                                                  | Your Turn                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| <b>Worked Example</b><br>Solve the following pair of simultaneous equations:<br>3x + 4y = 5<br>$x^2 + y^2 = 17$ | Your TurnSolve the following pair of simultaneous equations: $4x - 5y = 1$ $x^2 + y^2 = 61$ |
|                                                                                                                 |                                                                                             |
|                                                                                                                 |                                                                                             |

| Worked Example                               | Your Turn                                    |
|----------------------------------------------|----------------------------------------------|
| Solve:<br>$3y^2 - 2x^2 = 19$<br>2y + 3x = 15 | Solve:<br>$2y^2 - 3x^2 = 38$<br>3y + 2x = 19 |
|                                              |                                              |
|                                              |                                              |
|                                              |                                              |
|                                              |                                              |
|                                              |                                              |
|                                              |                                              |

| Worked Example                                                                                            | Your Turn                                                                                    |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Worked Example         Solve the following pair of simultaneous equations: $y = x^2 + x - 2$ $y = 2x + 4$ | Your TurnSolve the following pair of simultaneous equations: $y = x^2 + 7x - 2$ $y = 2x + 4$ |
|                                                                                                           |                                                                                              |
|                                                                                                           |                                                                                              |

# Fill in the Blanks SolvingilNonth

# SolvingilNontheigaps Simultaneous Equations

| Question                                   | State x =/ y =<br>substitution | Substitute and rearrange to give quadratic equation                                 | Solve the quadratic equation     | Find corresponding<br>y or x values |
|--------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|
| $y = x^2 - 5x + 3$ $y = 2x - 7$            | y = 2x - 7                     | $2x - 7 = x^2 - 5x + 3$<br>$0 = x^2 - 7x + 10$                                      | (x-2)(x-5) = 0<br>x = 2 or x = 5 |                                     |
| $x^{2} + 2y = 13 - 4x$ $x + y = 5$         | y = 5 - x                      | $x^{2} + 2(5 - x) = 13 - 4x$<br>$x^{2} + 10 - 2x = 13 - 4x$<br>$x^{2} + 2x - 3 = 0$ |                                  |                                     |
| $x^2 + y^2 = 20$ $x - y = 2$               | x = y + 2                      |                                                                                     |                                  |                                     |
| $y + 10 = x^2 + x$ $x - y - 1 = 0$         |                                |                                                                                     |                                  |                                     |
| $3x^2 - 2y = 7x - 8$ $3x = y - 2$          |                                |                                                                                     |                                  |                                     |
| $x^{2} + y^{2} + xy = 31$<br>x + y + 1 = 0 |                                |                                                                                     |                                  |                                     |

| Extra Notes |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |

## 4 Advanced Sequences

## **Geometric Sequences**

| Worked Example                                                                     | Your Turn                                                                          |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Generate the first 5 terms of the following geometric sequence: $4 \times 3^{n-1}$ | Generate the first 5 terms of the following geometric sequence: $5 \times 4^{n-1}$ |
|                                                                                    |                                                                                    |
|                                                                                    |                                                                                    |

| Worked Example                                                                                                                                    | Your Turn                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Write down the n <sup>th</sup> term of the following geometric sequences:<br><i>a)</i> 4, 12, 36, 108<br>b) 4, -12, 36, -108<br>c) 108, 36, 12, 4 | Write down the n <sup>th</sup> term of the following geometric sequences:         a)       5, 20, 80, 320         b)       5, -20, 80, -320         c)       320, 80, 20, 5 |
| d) $\sqrt{7}, 7, 7\sqrt{7}, 49$<br>e) $3p^4, 6p^4q^4, 12p^4q^8$                                                                                   | d) $\sqrt{3}, 3, 3\sqrt{3}, 9$<br>e) $2x^4, \frac{8x^4}{y^4}, \frac{32x^4}{y^8}$                                                                                            |
|                                                                                                                                                   |                                                                                                                                                                             |
|                                                                                                                                                   |                                                                                                                                                                             |

| Worked Example                                                                                                                                                  | Your Turn                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Worked Example<br>The second term of a geometric sequence is 78. The sixth term<br>of the same sequence is 101,088. Calculate the value of the<br>common ratio. | Your Turn<br>A geometric sequence has second and fifth terms 108 and 4,<br>respectively. Calculate the value of the common ratio. |
|                                                                                                                                                                 |                                                                                                                                   |

| Worked Example                                                                                                                                                                                                                                                                                     | Your Turn                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The value of a car at the start of year <i>n</i> is $V_n$ . The value at the start of the following year is $V_{n+1}$ where $V_{n+1} = kV_n$ . A car was purchased as new in 2020 for £3,200. The same car was sold in 2022 for £2,048. Work out the value of the depreciation constant <i>k</i> . | At the start of year <i>n</i> , the number of animals in a population<br>is $P_n$ . At the start of the following year, the number of animals<br>in the population is $P_{n+1}$ where $P_{n+1} = kP_n$ . At the start of<br>2017 the number of animals in the population was 4000. At<br>the start of 2019 the number of animals in the population was<br>3610. Find the value of the constant <i>k</i> . |
|                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                           |

| Worked Example                                                                                                                                               | Your Turn                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Worked Example         A geometric series has first term $(x - 3)$ , second term $(x + 1)$ and third term $(4x - 2)$ . Find the two possible values of $x$ . | Your TurnThe first three terms of a geometric series are $4p$ , $(3p + 15)$<br>and $(5p + 20)$ respectively, where $p$ is a positive constant.<br>Find the value of $p$ . |
|                                                                                                                                                              |                                                                                                                                                                           |
|                                                                                                                                                              |                                                                                                                                                                           |

## **Quadratic Sequences**

| Worked Example                                                                                | Your Turn                                                                                |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Worked ExampleGenerate the first 5 terms of the following quadratic sequence: $3n^2 + 2n - 5$ | Your TurnGenerate the first 5 terms of the following quadratic sequence: $3n^2 - 2n + 5$ |
|                                                                                               |                                                                                          |

| Worked Example                                                             | Your Turn                                                                  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Find the n <sup>th</sup> term of the following sequence: 0, 11, 28, 51, 80 | Find the n <sup>th</sup> term of the following sequence: 6, 13, 26, 45, 70 |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
|                                                                            |                                                                            |
| Worked Example                                                                                                                                                                        | Your Turn                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>WORKED EXAMPLE</b><br>Here are the first five terms of a quadratic sequence $6, -4, -22, -48, -82$<br>Find an expression, in terms of <i>n</i> , for the nth term of the sequence. | Here are the first five terms of a quadratic sequence<br>-14, -25, -38, -53, -70<br>Find an expression, in terms of <i>n</i> , for the nth term of the<br>sequence. |
|                                                                                                                                                                                       |                                                                                                                                                                     |

| Worked Example                                                                                                                                                                                                       | Your Turn                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Worked Example<br>The <i>n</i> th term of a sequence is given by $an^2 + bn + c$<br>The second term is 23, the fourth term is 57 and the sixth<br>term is 107. Find the values of <i>a</i> , <i>b</i> and <i>c</i> . | Your Turn<br>The <i>n</i> th term of a sequence is given by $an^2 + bn + c$<br>The fourth term is 34, the seventh term is 124 and the<br>eleventh term is 328. Find the values of <i>a</i> , <i>b</i> and <i>c</i> . |
|                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |

| Worked Example                                                                                                                                      | Your Turn                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| A quadratic sequence has an <i>n</i> th term of $-3n^2 + 2n - 2$<br>A term in this sequence is equal to $-343$ .<br>Find the position of this term. | A sequence has an nth term of $-2n^2 - 5n + 1$<br>A term in this sequence is equal to $-816$ .<br>Find the position of this term. |
|                                                                                                                                                     |                                                                                                                                   |

| Worked Example                                                                                                                                        | Your Turn                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Here are the first five terms of a sequence.<br>-11, -14, -13, -81<br>An expression for the <i>n</i> th term of this sequence is<br>$2n^2 - 9n - 4$ . | Here are the first five terms of a sequence.<br>-8, -5, 2, 13,28<br>An expression for the nth term of this sequence is<br>$2n^2 - 3n - 7$ . |
| Find an expression for the nth term of a sequence whose first five terms are −99, −126, −117, −729                                                    | Find an expression for the nth term of a sequence whose first five terms are $56, 35, -14, -91, -196$                                       |

## Fill in the Gaps

| Sequence           | Туре   | n <sup>th</sup> term | 10 <sup>th</sup> term | 11 <sup>th</sup> term | 12 <sup>th</sup> term | 30 <sup>th</sup> term | Is 60 in the sequence? |
|--------------------|--------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
| 8, 11, 14, 17,     |        |                      |                       |                       |                       |                       |                        |
| 4, 11, 20, 31,     |        |                      |                       |                       |                       |                       |                        |
|                    |        |                      | 67                    | 74                    | 81                    |                       |                        |
| -4, -10, -16, -22, |        |                      |                       |                       |                       |                       |                        |
| 0, 11, 28, 51,     |        |                      |                       |                       |                       |                       |                        |
|                    |        | $n^2 + 12n - 4$      |                       |                       |                       |                       |                        |
| 3, 7, 15, 27,      |        |                      |                       |                       |                       |                       |                        |
|                    |        | 4n - 8               |                       |                       |                       |                       |                        |
|                    |        | $4n^2 + n$           |                       |                       |                       |                       |                        |
| -3, 0, 5, 12,      |        |                      |                       |                       |                       |                       |                        |
|                    | Linear |                      | 56                    |                       | 66                    |                       |                        |
|                    | Linear |                      |                       |                       | 70                    | 178                   |                        |



| Extra Notes |  |
|-------------|--|
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |
|             |  |

| 6 Algebraic Proof |
|-------------------|
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |

| Fluency Practice                                                                                        |          |                |               |                         |                              |                             |                                       |                                            |                                           |                  |                              |                             |                                           |                                                |                                               |  |
|---------------------------------------------------------------------------------------------------------|----------|----------------|---------------|-------------------------|------------------------------|-----------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------|------------------|------------------------------|-----------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------|--|
| If $n$ is any integer,<br>orm algebraic expressions to describe<br>quences, sums & products of numbers? |          |                |               |                         |                              |                             |                                       |                                            |                                           |                  |                              |                             |                                           |                                                |                                               |  |
| Forming<br>Expressions<br>these types, se                                                               | A number | An even number | An odd number | Two consecutive numbers | Two consecutive even numbers | Two consecutive odd numbers | The sum of<br>two consecutive numbers | The sum of<br>two consecutive even numbers | The sum of<br>two consecutive odd numbers | A number squared | The square of an even number | The square of an odd number | The product of<br>two consecutive numbers | The product of<br>two consecutive even numbers | The product of<br>two consecutive odd numbers |  |

| Worked Example                                                                                                        | Your Turn                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| A number is given as $5n - 8$ where $n$ is an integer.<br>Write down the expression for the next consecutive integer. | A number is given as $-2n + 13$ where $n$ is an integer.<br>Write down the expression for the next consecutive integer. |
|                                                                                                                       |                                                                                                                         |
|                                                                                                                       |                                                                                                                         |
|                                                                                                                       |                                                                                                                         |

|    | Worked Example                                                                                                                |    | Your Turn                                                                                                                              |
|----|-------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------|
| a) | An odd number is given as $-2n + 13$ where $n$ is an integer. Write down the expression for the next consecutive odd number.  | a) | An even number is given as $-2n + 14$ where $n$ is an integer. Write down the expression for the next consecutive even number.         |
| b) | An even number is given as $-2n - 4$ where $n$ is an integer. Write down the expression for the next consecutive even number. | b) | An odd number is given as $-2n - 9$ where <i>n</i> is an integer.<br>Write down the expression for the next consecutive odd<br>number. |
|    |                                                                                                                               |    |                                                                                                                                        |

|    | Worked Example                                                                           |    | Your Turn                                                                                 |
|----|------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------|
| a) | Given that $n$ is an integer. Prove that $(2n-5)(4n-9) - 10$ is always an odd number.    | a) | Given that $n$ is an integer. Prove that $(4n + 9)(4n - 1) - 3$ is always an even number. |
| b) | Given that <i>n</i> is an integer. Prove that $(4n - 3)^2 + 9$ is always an even number. | b) | Given that <i>n</i> is an integer. Prove that $(2n - 7)^2 + 2$ is always an odd number.   |
|    |                                                                                          |    |                                                                                           |
|    |                                                                                          |    |                                                                                           |

| Worked Example                                                                                                                  | Your Turn                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>Worked Example</b><br>Given that n is a positive integer. Prove that $(2m + 3)^2 - (2m + 2)^2 - 1$ is always divisible by 4. | Your TurnGiven that n is a positive integer. Prove that $(2m+2)^2 - (2m-4)^2 - 12$ is always divisible by 24. |
|                                                                                                                                 |                                                                                                               |

| Worked Example                                                            | Your Turn                                                                  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Prove that $(2x - 7)(4x - 7) - (2x - 2)(2x - 7) + 1$ is a perfect square. | Prove that $(4y - 7)(5y - 1) - (2y + 3)(2y - 3) + 7y$ is a perfect square. |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |
|                                                                           |                                                                            |

| Worked Example                                                                           | Your Turn                                                                           |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Prove algebraically that the sum of any four consecutive integers is not divisible by 4. | Prove algebraically that the sum of any six consecutive integers is divisible by 3. |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |
|                                                                                          |                                                                                     |

| Worked Example                                                                                                             | Your Turn                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Prove algebraically that the sum of the squares of any three consecutive integers is always two more than a multiple of 3. | Prove algebraically that the sum of the squares of any four consecutive integers is always two more than a multiple of 4. |
|                                                                                                                            |                                                                                                                           |
|                                                                                                                            |                                                                                                                           |
|                                                                                                                            |                                                                                                                           |
|                                                                                                                            |                                                                                                                           |
|                                                                                                                            |                                                                                                                           |
|                                                                                                                            |                                                                                                                           |

| Worked Example                                                                               | Your Turn                                                                                    |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Prove algebraically that the sum of four consecutive even integers is always divisible by 4. | Prove algebraically that the sum of three consecutive odd integers is always divisible by 3. |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |
|                                                                                              |                                                                                              |

|    | Worked Example                                                                                             |    | Your Turn                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------|
| a) | Prove algebraically that the sum of the squares of two consecutive even integers is always divisible by 4. | a) | Prove algebraically that the sum of the squares of three consecutive odd integers is always 1 less than a multiple of 12.          |
| b) | Prove algebraically that the sum of the squares of two                                                     |    |                                                                                                                                    |
|    | consecutive odd integers is always 2 more than a multiple of 4.                                            | b) | Prove algebraically that the sum of the squares of three consecutive even integers always has a remainder of 8 when divided by 12. |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |
|    |                                                                                                            |    |                                                                                                                                    |

| a) Prove algebraically that the sum of any two odd integers is always even.                                                                                                 | tegers |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| b) Prove algebraically that the difference of any two even integers is always even.       b) Prove algebraically that the difference of any two or integers is always even. | dd     |

| Worked Example                                                                                                        | Your Turn                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| A sequence has the n <sup>th</sup> term $n^2 - 6n + 10$ . By completing the square, show that every term is positive. | A sequence has the n <sup>th</sup> term $n^2 - 10n + 27$ . By completing the square, show that every term is positive. |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |
|                                                                                                                       |                                                                                                                        |

| Worked Example                                         | Your Turn                                             |
|--------------------------------------------------------|-------------------------------------------------------|
| Show that for any integer n, $n^2 + n$ is always even. | Prove that $n(n-1) + 1$ is odd for all integers $n$ . |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |
|                                                        |                                                       |

| Worked Example                                                                                                                                                    | Your Turn                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Worked Example         I think of a two-digit number. I then reverse the digits. Prove that the difference between the two numbers is a multiple of 9.         9. | Your Turn Prove that the sum of a four-digit number and its reverse is a multiple of 11. |
|                                                                                                                                                                   |                                                                                          |

| Worked Example                                                                          | Your Turn                                                                                |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Given that<br>$4bx - 3a + 7 - 10ax \equiv -30x - 8$<br>Find the values of $a$ and $b$ . | Given that<br>$ax + 5b - 8ax + 4bx \equiv -23x + 15$<br>Find the values of $a$ and $b$ . |
|                                                                                         |                                                                                          |
|                                                                                         |                                                                                          |
|                                                                                         |                                                                                          |
|                                                                                         |                                                                                          |
|                                                                                         |                                                                                          |

| Worked Example                                                                                      | Your Turn                                                                                          |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Worked ExampleGiven that $3(4px - q) + 5(px + 3q) \equiv 68x - 60$ Find the values of $p$ and $q$ . | Your TurnGiven that<br>$5(4ax + 3b) - 2(3ax + 2b) \equiv -84x + 66$<br>Find the values of a and b. |
|                                                                                                     |                                                                                                    |

| Worked Example                                                                                                                                          | Your Turn                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Given that<br>$(2y-1)^2 + ay + 7 = (2y+b)(2y+4)$<br>where <i>a</i> and <i>b</i> are integers, find the value of <i>a</i> and the value<br>of <i>b</i> . | <b>Your Turn</b><br>Given that<br>$(2x + 1)^2 - 12x + r = (2x + s)(2x - 2)$<br>where <i>r</i> and <i>s</i> are integers, find the value of <i>r</i> and the value<br>of <i>s</i> . |
|                                                                                                                                                         |                                                                                                                                                                                    |

| Worked Example                                                                                   | Your Turn                                                                                       |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $3x^2 - 3bx + 16a \equiv 3(x - a)^2 + 5$<br>Work out the two possible pairs of values of a and b | $2x^2 - 2bx + 7a \equiv 2(x - a)^2 + 3$<br>Work out the two possible pairs of values of a and b |
|                                                                                                  |                                                                                                 |
|                                                                                                  |                                                                                                 |
|                                                                                                  |                                                                                                 |
|                                                                                                  |                                                                                                 |
|                                                                                                  |                                                                                                 |
|                                                                                                  |                                                                                                 |
|                                                                                                  |                                                                                                 |

| Extra | Notes |
|-------|-------|
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |

## 7 Advanced Vectors

| Worked Example                    | Your Turn                         |
|-----------------------------------|-----------------------------------|
| ABCD is a parallelogram.          | ABCD is a parallelogram.          |
| Express $DB$ in terms of x and y. | Express $CA$ in terms of x and y. |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |
|                                   |                                   |







| Worked Example                                               | Your Turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The point X shares the line segment $FA$ in the ratio 2 : 3. | The point X shares the line segment FA in the ratio $3:1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Express $EX$ in terms of $x$ , $y$ and $z$ .                 | Express $CX$ in terms of $a, b$ and $c$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{c}                                     $     | $\begin{bmatrix} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $ |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| IINO A VECTOR IN A KATIO is given to create vectors $\overline{AX}$ and $\overline{XB}$ . | <u>AX</u> <u>XB</u> | a 2a       | 2a + 2b |         |          |           | 2<br>3 <b>a</b> | $\frac{2}{3}a+\frac{2}{3}b$ |       |        |        | $\frac{1}{4}a - \frac{1}{4}b$ | $\begin{array}{c c} \frac{4}{3}a - 2b \\ 2 & 3 & 4 \\ \end{array}$ | $\frac{6}{5}a + \frac{3}{10}b$ $\frac{4}{5}a + \frac{1}{5}b$ |
|-------------------------------------------------------------------------------------------|---------------------|------------|---------|---------|----------|-----------|-----------------|-----------------------------|-------|--------|--------|-------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| we ctor $\overline{AB}$ in the rat                                                        | Ratio $AX: XB$      | 1:2        | 2:1     | 3:1     | 3 : 2    | 1:4       | 2:1             | 1:2                         | 3:1   | 4:1    | 3 : 2  | 1:3                           |                                                                    |                                                              |
| Point X divides the                                                                       | AB                  | 3 <b>a</b> | 3a + 3b | 4a - 4b | 5a + 10b | 10a - 15b | a               | a + b                       | a - b | 2a + b | a - 4b |                               | 2 <b>a</b> – 3 <b>b</b>                                            |                                                              |

## Worked Example



*PQRS* is a parallelogram. *N* is the point on *SQ* such that SN : NQ = 3 : 2 $\overrightarrow{PQ} = \mathbf{a}$   $\overrightarrow{PS} = \mathbf{b}$ 

- (a) Write down, in terms of **a** and **b**, an expression for  $\overrightarrow{SQ}$ .
- (b) Express  $\overrightarrow{NR}$  in terms of **a** and **b**.




#### **Parallel Vectors**

Two vectors are parallel if they are *multiples* of each other.

| Vector 1                | Vector 2                 | Parallel? |    |
|-------------------------|--------------------------|-----------|----|
| а                       | -a                       | Yes       | No |
| a + b                   | 2 <b>a</b> + 2 <b>b</b>  | Yes       | No |
| a + b                   | <b>a</b> + 2 <b>b</b>    | Yes       | No |
| $\frac{1}{2}a + b$      | <b>a</b> + 2 <b>b</b>    | Yes       | No |
| 2 <b>a</b> + 5 <b>b</b> | 4 <b>a</b> + 10 <b>b</b> | Yes       | No |
| a + b                   | a - b                    | Yes       | No |
| a + b                   | -a - b                   | Yes       | No |
| a - b                   | -a + b                   | Yes       | No |
| 2 <b>a</b> + 3 <b>b</b> | $\frac{2}{3}a + b$       | Yes       | No |

# Worked Example



X is a point on AB such that AX: XB = 3: 1. M is the midpoint of BC. Show that  $\overrightarrow{XM}$  is parallel to  $\overrightarrow{OC}$ .



a) Find  $\overrightarrow{AB}$  in terms of  $\boldsymbol{a}$  and  $\boldsymbol{b}$ .

b) *P* is the point on *AB* such that AP:PB = 2:3.Show that  $\overrightarrow{OP}$  is parallel to the vector a + b.

| Straight Lines |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |

# Worked Example



B is the midpoint of AC. M is the midpoint of PB.

- a) Find  $\overrightarrow{PB}$  in terms of  $\boldsymbol{a}$  and  $\boldsymbol{b}$ .
- b) Show that *NMC* is a straight line.



- (a) Write an expression for  $\overrightarrow{ON}$  in terms of **a** and **b**.
- (b) Prove that OND is a straight line.

| Vector Proofs |  |  |
|---------------|--|--|
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |
|               |  |  |

## Worked Example

OACB is a parallelogram. Given that OXC and BXQ are straight lines, determine the ratio OX : XC.



OACB is a parallelogram. Given that OXC and BXQ are straight lines, determine the ratio OX : XC.





В



| Extra Notes |
|-------------|
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |
|             |