

Year 10 2024 Mathematics 2025 Unit 16 Booklet – Part 1

HGS Maths

Dr Frost Course

Name:

Class:

Year 10 2024 Mathematics 2025 Unit 16 Booklet – Part 2

HGS Maths

Dr Frost Course

Name:

Class:

Contents

- 1 <u>Recurring Decimals</u>
- 2 Advanced Straight Line Graphs (L2FM Only)
- 3 Parallel and Perpendicular Lines
- 4 <u>Graphical Inequalities</u>
- 5 <u>Non-Linear Graphs</u>

1 Recurring Decimals

Worked Example	Your Turn
Express as a decimal: a) $\frac{2}{9}$	Express as a decimal: a) $\frac{8}{9}$
b) $\frac{2}{11}$	b) $\frac{8}{11}$
c) $\frac{2}{15}$	c) $\frac{4}{15}$

Activity

For each of the following fractions, use your calculator to convert it to a decimal, then decide whether it is terminating or recurring. Now find the denominator as a product of its prime factors. Can you spot any patterns?

Fraction	Decimal using Calculator	Terminating or Recurring	Denominator as Product of Prime Factors	Fraction	Decimal using Calculator	Terminating or Recurring	Denominator as Product of Prime Factors
$\frac{1}{2}$				$\frac{1}{12}$			
$\frac{1}{3}$				$\frac{1}{13}$			
$\frac{1}{4}$				$\frac{1}{14}$			
$\frac{1}{5}$				$\frac{1}{15}$			
$\frac{1}{6}$				$\frac{1}{16}$			
$\frac{1}{7}$				$\frac{1}{17}$			
$\frac{1}{8}$				$\frac{1}{18}$	0.05	Recurring	$2 \times 3 \times 3$
$\frac{1}{9}$				$\frac{1}{19}$			
$\frac{1}{10}$				$\frac{1}{20}$			
$\frac{1}{11}$				$\frac{1}{21}$			

Activity

	Fraction	Factorised	The Law of Cancellation	Simplest Form	Factors of Denominator	Kind of Decimal
(i)	$\frac{8}{12}$					
(ii)	$\frac{3}{16}$					
(iii)	$\frac{9}{27}$					
(iv)	$\frac{12}{30}$					
(v)	$\frac{7}{32}$					
(vi)	$\frac{15}{21}$					
(vii)	$\frac{3}{10}$					
(viii)	$\frac{3}{18}$					
(ix)	$\frac{6}{33}$					
(x)	$\frac{3}{75}$					

Worked Example	Your Turn	
Express as a simplified fraction:	Express as a simplified fraction:	
0. 4	0.7	

Worked Example	Your Turn
Express as a simplified fraction:	Express as a simplified fraction:
0. 54	0. 27

Worked Example	Your Turn	
Express as a simplified fraction:	Express as a simplified fraction:	
0. 279	0.837	

Worked Example	Your Turn	
Express as a simplified fraction:	Express as a simplified fraction:	
0.789	0.579	

Worked Example	Your Turn
Express as a simplified fraction:	Express as a simplified fraction:
3.7654	7.5309

						Fill in	the Ga	ps					
roof	<i>x</i> as a fraction	$x = \frac{7}{9}$											
Decimal P	Subtract	9x = 7		99x = 35									
<mark>slanks</mark> Recurring Decimal Proof	Write out multiples of x	$10x = 7. \dot{7} = 7.77777 \dots$ $x = 0. \dot{7} = 0.77777 \dots$	10x = x = x = x	$100x = 35.\dot{3}\dot{5} = 35.3535$ $x = 0.\dot{3}\dot{5} = 0.3535$	100x = x = x = 0		1000x =	$100x = 2.\dot{2} = 2.22222$ 10x =					
Fill in the Blanks	x as recurring decimal	$x = 0.\dot{7}$	x = 0.2	x = 0.35	x = 0.41	$x = 0.\dot{2}\dot{7}$	x = 0.613	$x = 0.0\dot{2}$	x = 0.143	x = 0.932	x = 0.932	x = 0.005	

Worked Example	Your Turn
Worked Example Write the fraction $0.13\dot{6} \times 0.5$ as a fraction in its simplest form	Your Turn Write the fraction 0.681 × 0.1 as a fraction in its simplest form

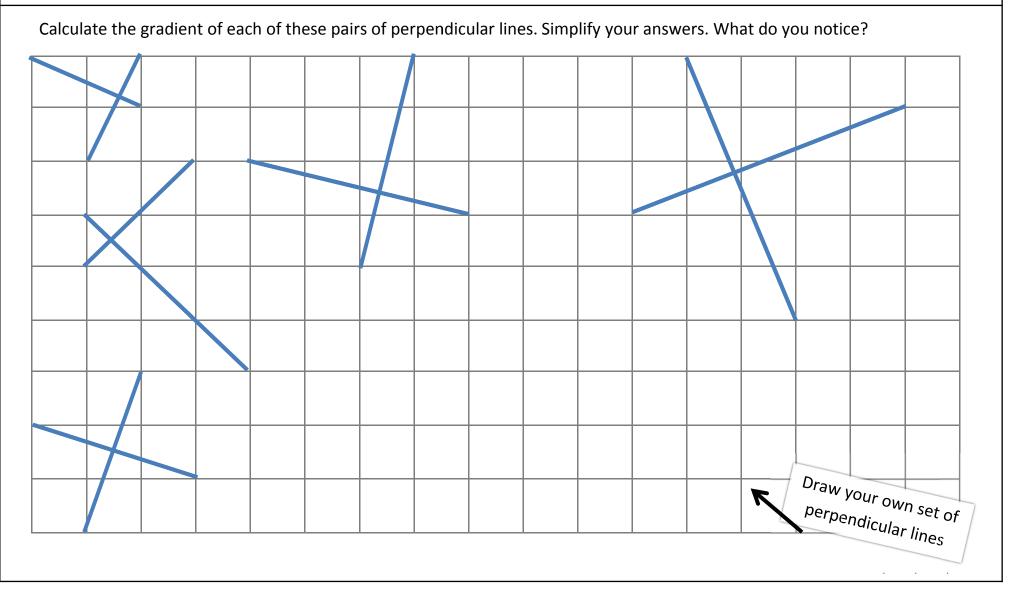
Extra Notes

3 Parallel and Perpendicular Lines

Parallel Lines

	Worked Example		Your Turn
a)	Write down the equation of a line parallel to $y = 2x - 3$	a)	Write down the equation of a line parallel to $y = -2x + 3$
b)	Write down the equation of the line that is parallel to $y = 6x + 1$ and passes through $(0, 8)$	b)	Write down the equation of the line that is parallel to $y = -6x - 1$ and passes through $(0, -8)$

Worked Example	Your Turn
Worked ExampleWrite down the equation parallel to $y = 4x + 1$ which passes through (2, 17)	Your TurnWrite down the equation parallel to $y = 8x + 5$ which passes through (2, 26)


Worked Example	Your Turn
Find the equation of the line parallel to $y = -\frac{1}{3}x - 4$ that passes through $(-2, 5)$	Find the equation of the line parallel to $y = -\frac{1}{2}x - 3$ that passes through (-2, 5)

Perpendicular Lines

Worked Example	Your Turn
Write the negative reciprocals of: a) 6	Write the negative reciprocals of: a) 7
b) $\frac{1}{6}$	b) $\frac{1}{7}$
c) $\frac{5}{6}$	c) $\frac{2}{7}$
d) $1\frac{5}{6}$	d) $1\frac{2}{7}$
e) 1.2	e) 3.5

P

Fluency Practice

	Worked Example		Your Turn
a)	Write down the equation of a line perpendicular to $y = 2x - 3$	a)	Write down the equation of a line perpendicular to $y = -2x + 3$
b)	Write down the equation of the line that is perpendicular to $y = \frac{1}{2}x + 3$ and passes through $(0, -1)$	b)	Write down the equation of the line that is perpendicular to $y = -\frac{1}{2}x + 3$ and passes through $(0, 1)$

Worked Example	Your Turn
Find the equation of the line perpendicular to $y = \frac{1}{2}x - 4$ that passes through (-2, 5)	Find the equation of the line perpendicular to $y = -\frac{4}{3}x + 3$ that passes through $(-12, -5)$

Worked Example	Your Turn
Worked Example Write down the equation perpendicular to $y = 4x + 1$ which passes through (8, 17)	Your TurnWrite down the equation perpendicular to $y = 8x + 5$ which passes through (16, 26)

Worked Example	Your Turn
Worked Example Find the equation of the line perpendicular to $3x + 2y = 5$ which passes through the point (3, 7)	Your TurnFind the equation of the line perpendicular to $2x + 3y = 5$ which passes through the point (4, 7)

Worked Example	Your Turn
Worked Example The line L_1 has equation $-3x + 4y = 8$ The line L_2 has equation $4x + 3y = -5$ Determine whether L_1 and L_2 are perpendicular.	Your Turn The line L_1 has equation $-2x + y = 6$ The line L_2 has equation $-3x + 2y = 4$ Determine whether L_1 and L_2 are perpendicular.

Worked Example	Your Turn
Find the midpoint of the line segment <i>AB</i> where <i>A</i> (-5,3) and <i>B</i> (5, -12). The line segment is plotted below.	Find the midpoint of the line segment <i>AB</i> where <i>A</i> (-3, 6) and <i>B</i> (3, -7). The line segment is plotted below.

Worked Example	Your Turn
Worked Example Find the midpoint of the line segment between (-2,4) and (-9,9)	Your Turn Find the midpoint of the line segment between (2, -4) and (11,8)

Worked Example	Your Turn
X is the point $(-10, a)$ Y is the point $(0, -8)$ M is the point $(b, -4)$ M is the midpoint of XY. Find the value of a and the value of b.	X is the point $(-6, a)$ Y is the point $(2, -2)$ M is the point $(b, 2)$ M is the midpoint of XY.Find the value of a and the value of b.

Worked Example	Your Turn
A sketch of the line with equation $3x - 8y = 24$ is shown below. The line passes through the points A , B and M , where M is the midpoint of the line AB .	A sketch of the line with equation $6x + 5y = 30$ is shown below. The line passes through the points A, B and M, where M is the midpoint of the line AB.
Calculate the coordinates of <i>M</i> .	Calculate the coordinates of <i>M</i> .

Fill in the Gaps

Fill in the missing information in the table.

Point A	Point B	Midpoint of the line segment AB	<u>Length</u> of the line segment AB	<u>Gradient</u> of the line segment AB	Equation of the line through A and B.
(1,3)	(5,11)				
(-3,2)	(5, -6)				
$\left(\frac{-7}{3}, \frac{-22}{3}\right)$	$\left(\frac{11}{3}, \frac{-4}{3}\right)$				
	(-7,11)	$\left(-11,\frac{7}{2}\right)$			
	(-2,-4)		2√5		x + 2y + 10 = 0
		(4,1)	20	$\frac{3}{4}$	
(4,1)			4√13		2x + 3y - 11 = 0

<u>To consider:</u>

- Which of these have multiple possible answers?
- If you were not given either point A or point B, what is the minimum information required to complete the row?

Worked Example	Your Turn
The point <i>M</i> lies on the line segment <i>AB</i> where $A(-1, -3)$ and $B(8, 3)$. Given that $AM : MB = 2 : 1$, find the coordinates of <i>M</i> .	The point <i>M</i> lies on the line segment <i>AB</i> where $A(-5, -1)$ and $B(7, 3)$. Given that $AM : MB = 3 : 1$, find the coordinates of <i>M</i> .

Fill in the Gaps

Ratio AX: XB	Point A	Point X	Point <i>B</i>
2:1	(2,4)		(8,16)
4:2	(2,4)		(8,16)
1:2	(2,4)		(8,16)
1:2	(2,4)	(8,16)	
1:2		(2,4)	(8,16)
	(2,4)	(8,16)	(26,52)
	(26,52)	(8,16)	(2,4)
	(13,26)	(4,8)	(1,2)
3:1		(4,7)	(0,1)
4:1		(4,7)	(0,1)
5:1		(4,7)	(0,1)
1:1		(4,7)	(0,1)

_	Point C divides t	he line segment	Point C divides the line segment AB in the given ratio.	ratio.
Point A	Point B	AC : CB	Point C	Midpoint of AB
(0,0)	(3, 6)	2:1		(1.5, 3)
(1, 1)	(7, 4)	1:2		
(10,5)	(0,0)	4:1		
(0,0)	(10,5)	2:3		
(-1, 0)	(11,8)	3:1		
(4, 7)	(8, -5)	1:3		
(2.3, -5.1)	(4.8, 2.4)	3:2		
(0,0)	(-5, -7)	5:2		
(0,0)		3:1		(2,4)
	(5, 2)	1:2		(3.5, 0.5)
(-1, 6)		3:2	(2, 3)	
(11, -5)	(-3,2)		(5, -2)	
(0,2a)		2:1	(-4a, 4a)	
$\left(-\frac{9}{10},\frac{2}{3}\right)$	$\left(\frac{1}{2}, 5\frac{1}{3}\right)$		$\left(-\frac{1}{10},\frac{10}{3}\right)$	
		2:1	(6, -3)	(4, -2)
		2:5	$\left(\frac{11b}{14},-2b\right)$	(b,b)

Fill in the Gaps

Worked Example	Your Turn
A sketch of $2x + 3y = -30$ is shown below. The line passes though the points R , S and T , where RS : ST is in the ratio $4 : 1$.	A sketch of $3x - 5y = 60$ is shown below. The line passes though the points <i>P</i> , <i>Q</i> and <i>R</i> , where PQ : QR is in the ratio $3 : 1$.
T y x S R R	P
Work out the coordinates of <i>S</i> .	Work out the coordinates of <i>Q</i> .

Fill in the Gaps

Q	а	b	m	a to m : m to b	a to m : a to b	m is $rac{2}{7}$ along the line segment ab
1	(1,5)	(13, 11)		1:1		
2		(12, 10)	(7,8)		1:2	
3	(2,6)		(8,9)			$\frac{1}{2}$
4	(2,6)	(14, 12)		1:2		
5	(2,6)	(14, 12)	(10, 10)			
6		(14, 12)	(9,9)			$\frac{2}{3}$
7		(14, 12)	(9,9)		3:4	
8	(-6,0)		(9,9)			3 5
9	(-6,0)	(14, 10)		3:2		
10	(-6,0)	(26, 16)	(6,6)			
11	(-6,0)		(-6, -6)			$\frac{3}{8}$
12	(-12,0)	(-12, -32)	(-12, -12)			

Worked Example	Your Turn
A is the point (3,8)	A is the point (3,8)
B is the point $(1, -2)$	<i>B</i> is the point (1, 4)
<i>C</i> is the midpoint of <i>AB</i>	<i>C</i> is the midpoint of <i>AB</i>
Find the equation of the line perpendicular to AB which passes through C	Find the equation of the line perpendicular to <i>AB</i> which passes through <i>C</i>

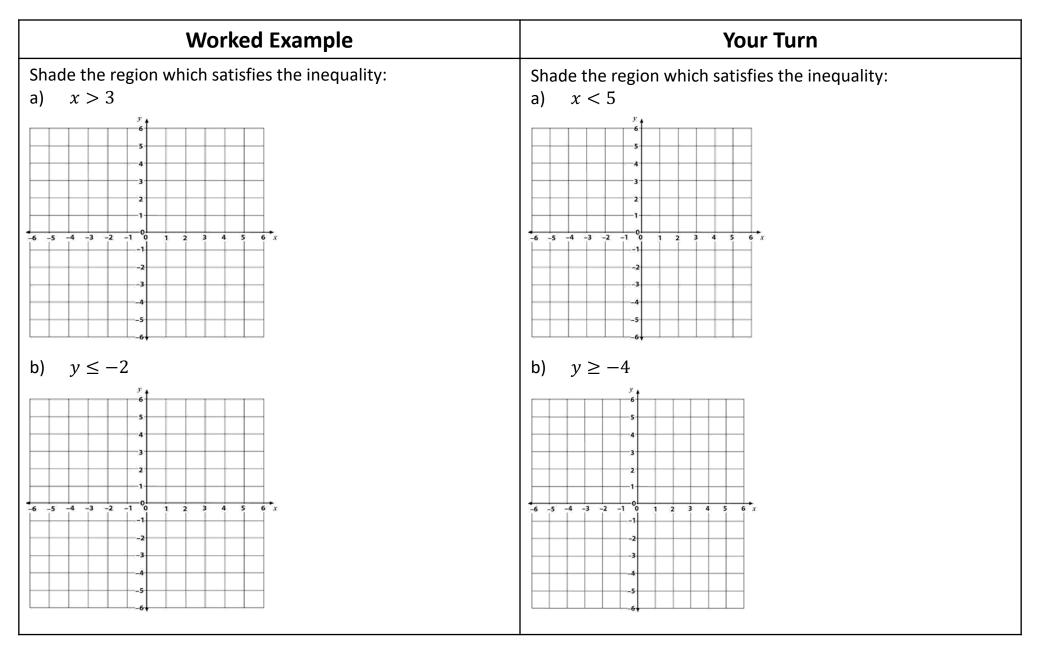
Worked Example	Your Turn
ABCD is a rhombus. A has coordinates (5, 10) The equation of <i>DB</i> is $y = \frac{1}{2}x + 5$ Find an equation of diagonal <i>AC</i>	ABCD is a rhombus. A has coordinates (5, 11) The equation of <i>DB</i> is $y = \frac{1}{2}x + 6$ Find an equation of diagonal <i>AC</i>
$\begin{array}{c} y \\ \downarrow \\$	

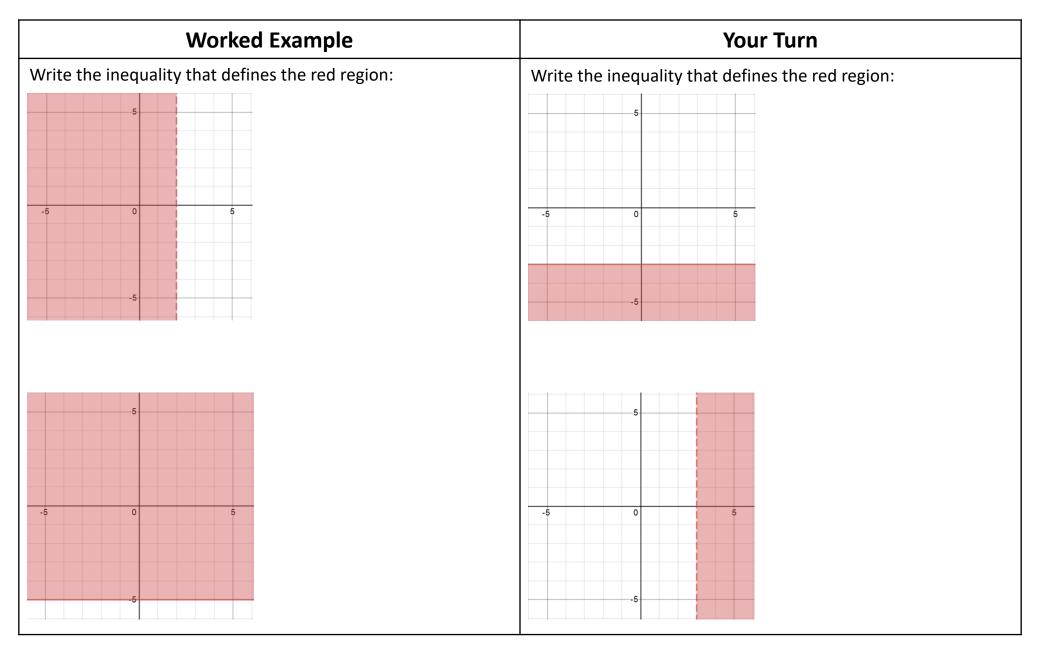
Fill in the Gaps

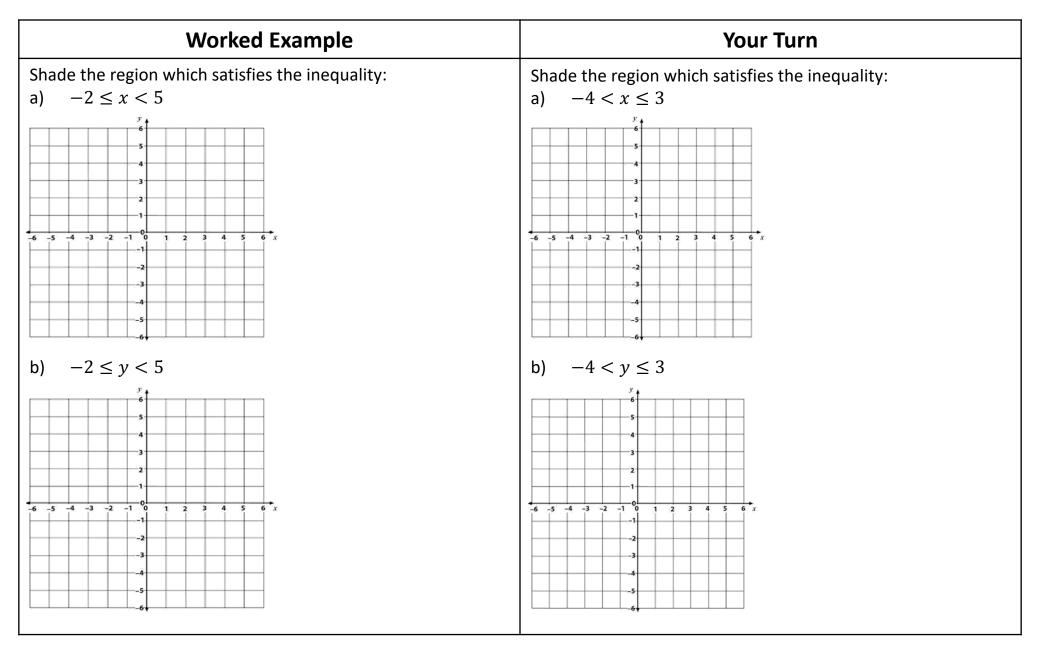
Equation	Point on the Line (1)	Point on the Line (2)	Gradient	y intercept	The parallel line that goes through (2, 5)	Gradient of all perpendicular lines
y = 2x + 8						
y = 4x - 1						
	(1,5)	(3,11)				
	(5,9)	(8,12)				
	(4,6)	(6,2)				
	(4,3)		-3			
	(2,9)		6			
	(-1,2)		3			
	(2,10)			(0,4)		
	(3, 11)				y = 5x - 5	
	(4,3)					-2

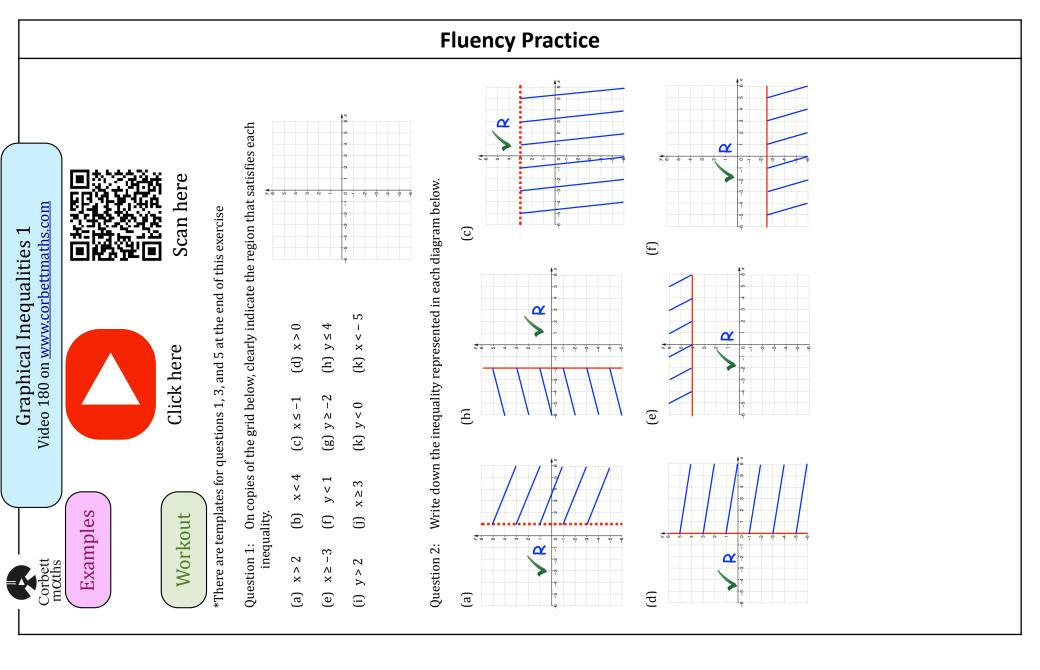
Fill in the Gaps

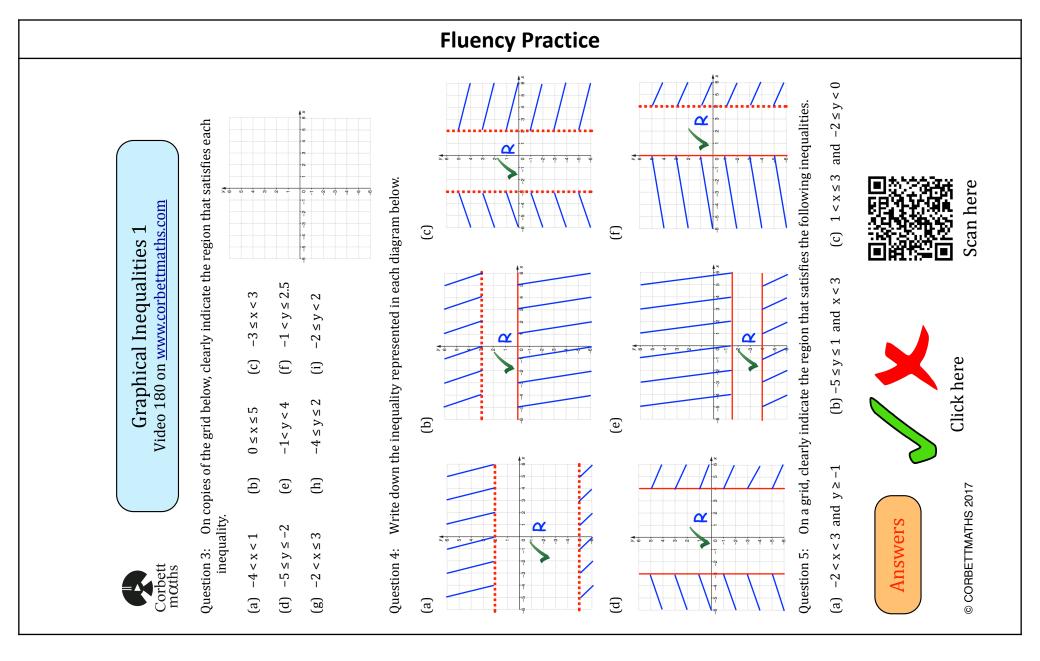
Equation of line	Point on the line (1)	Point on the line (2)	Gradient	y - intercept	x - intercept	Gradient of a perpendicular line
y = 2x + 1	(-2,)	(2,)				
y = -1 - x	(, 1)	(, -2)				
	(4, -4)	(4, 3)				
	(-1,5)	(2,-4)				
	(-3, -2)	(-8, -2)				
	(-3, 5)	(3,)	<u>-4</u> 3			
	(4, 0)	(, -6)	$\frac{3}{4}$			
2y = 3x - 5	(1,)	(3, 🚺)				
3y = 4x - 7	(, -1)	(, 3)				

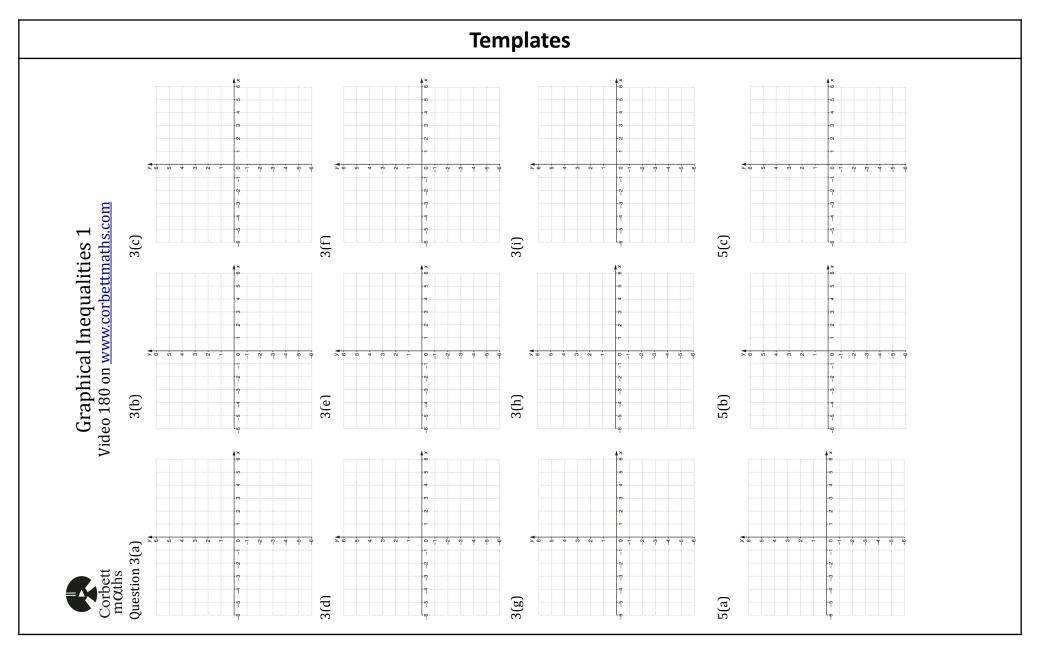

Fill in the Blanks

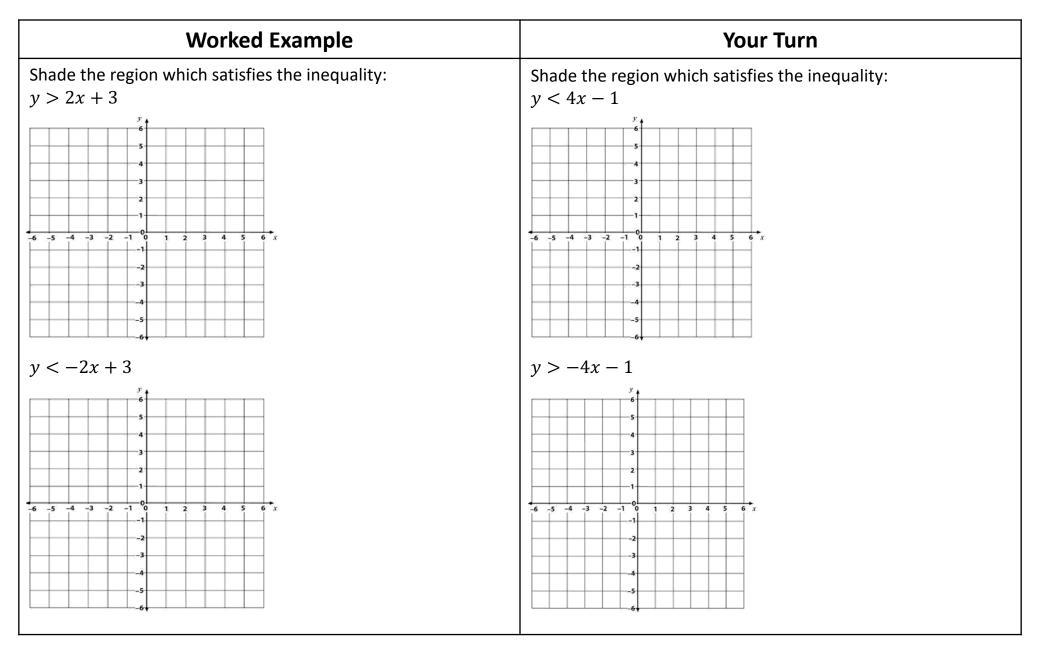

Coordinate Geometry with Two Points

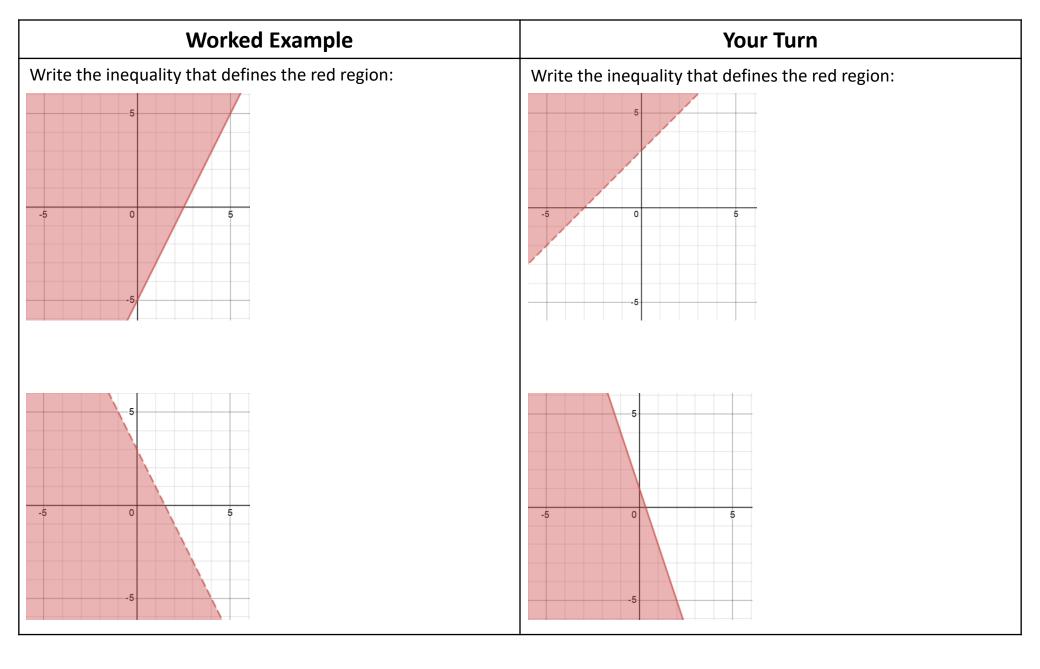

(x_1, y_1)	(x_2, y_2)	Gradient m	Perpendicular Gradient	Midpoint of Line	Length of Line	Equation of Line
(0,3)	(2,7)	$\frac{7-3}{2-0} = 2$	$-\frac{1}{2}$	(1,5)	$\sqrt{2^2 + 4^2}$ $= 4.47$	y = 2x + 3
(0,2)	(4,14)		$-\frac{1}{3}$			
(0,5)	(3,8)				$\sqrt{3^2 + 3^2}$ $= 4.24$	
(2,1)	(0,9)					
(3,6)	(1,10)					
(3,3)	(2, -1)					
(3,7)	(6,8)					
(5,11)				(4,9)		
	(2,9)		1		$\sqrt{8}$	

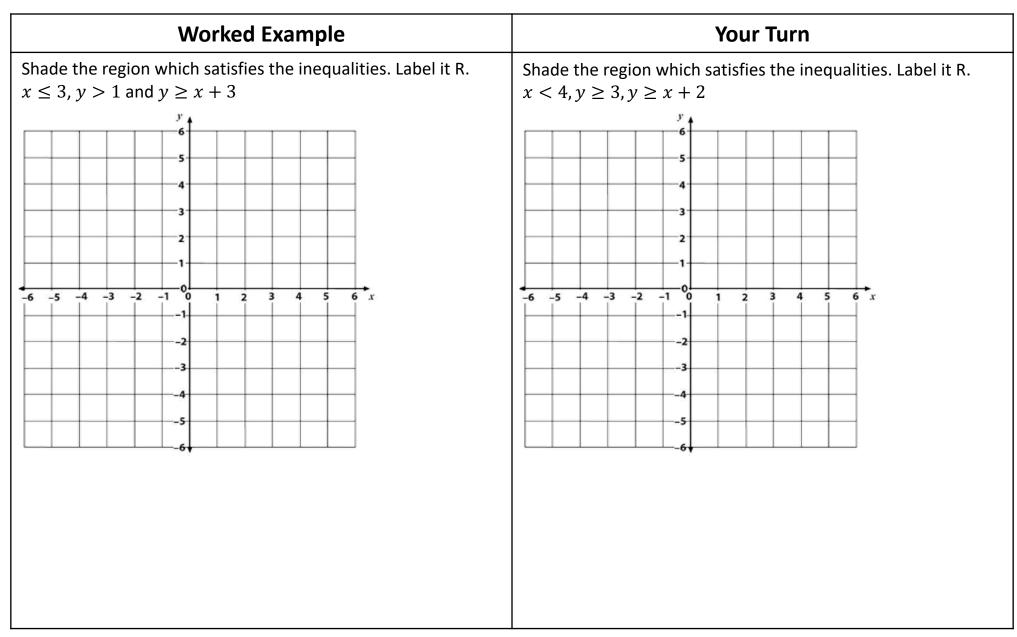

Extra Notes

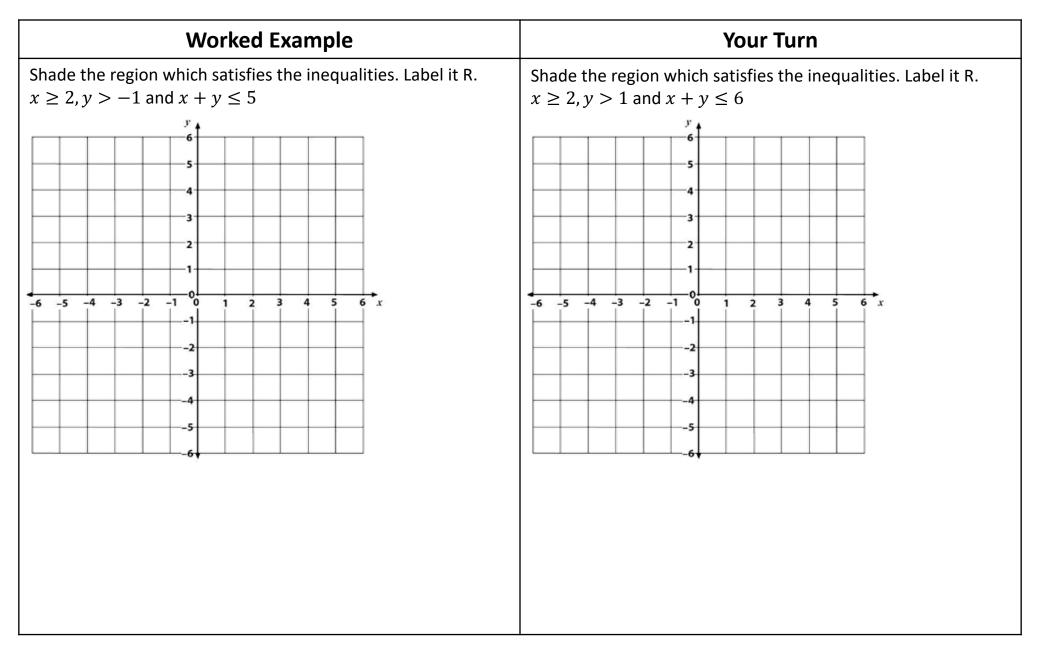

4 Graphical Inequalities

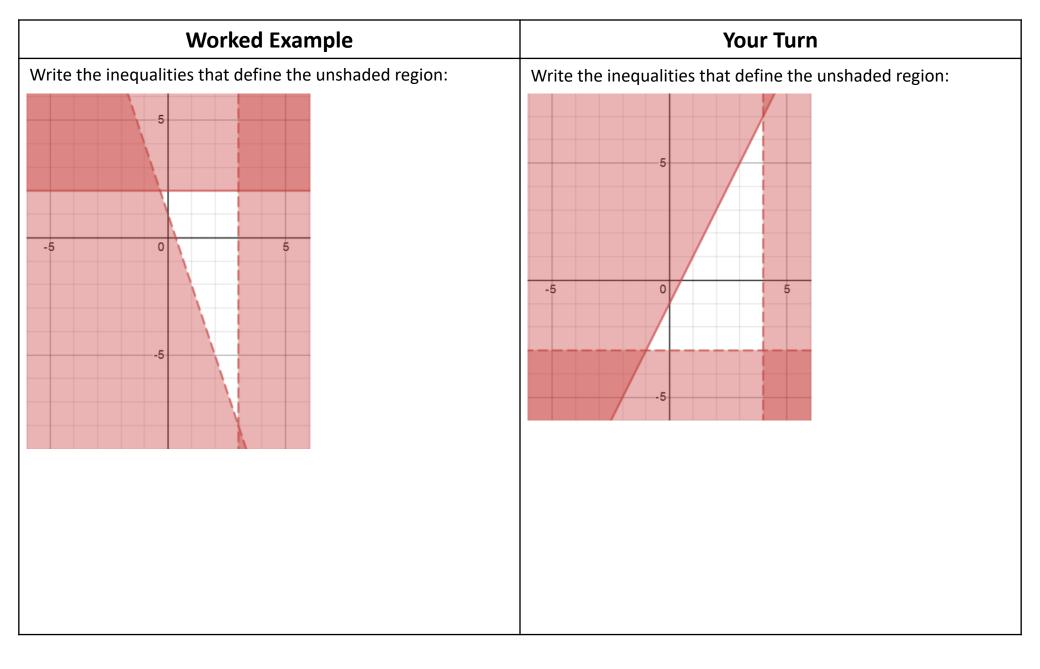


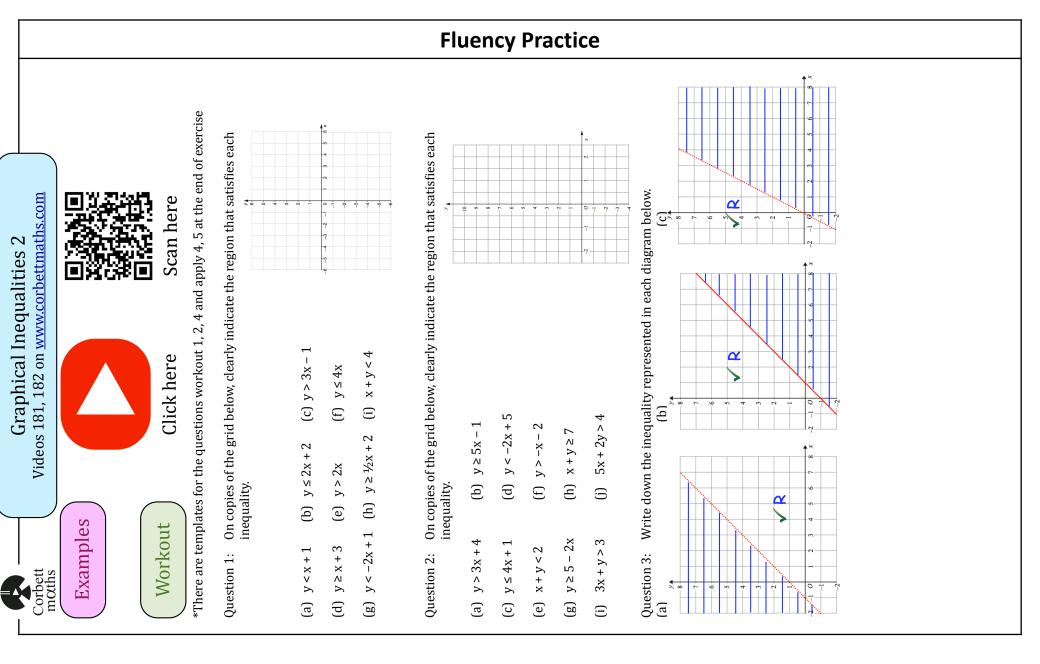


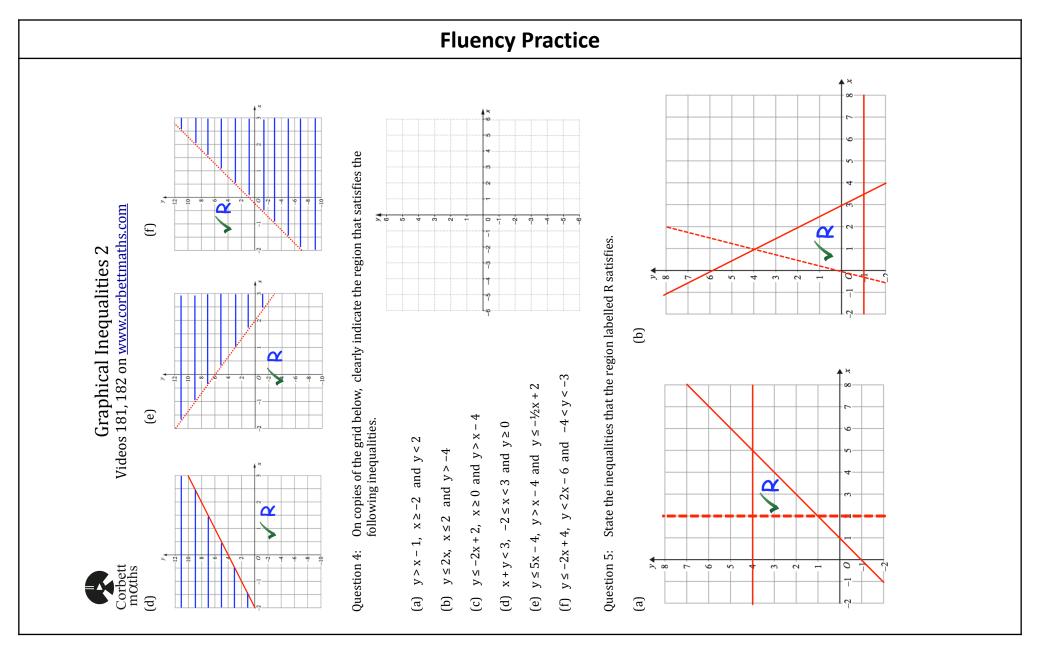


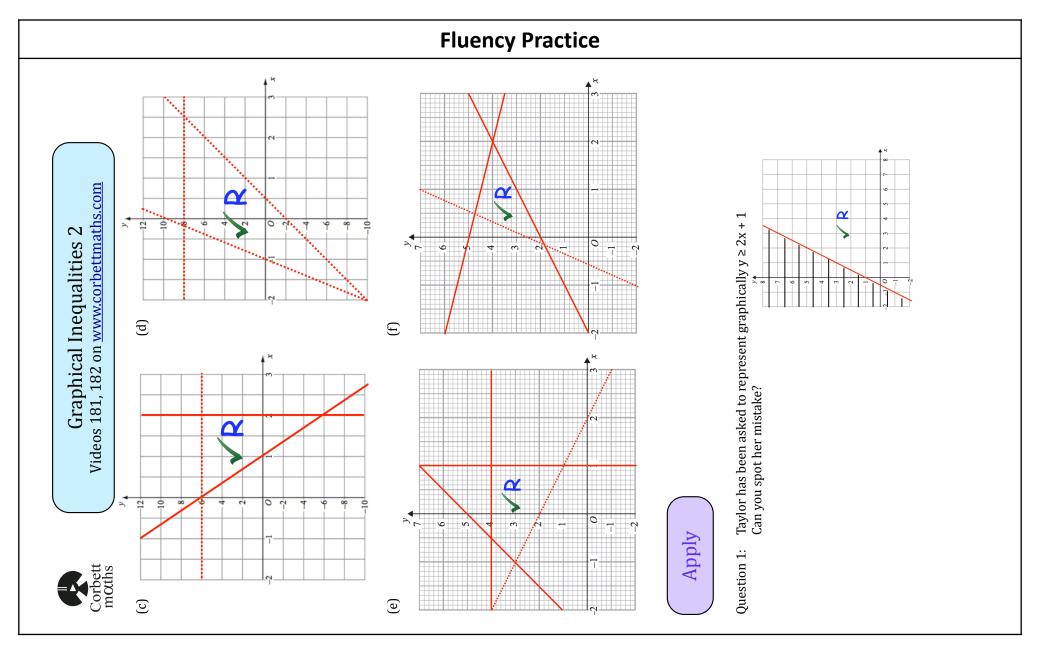


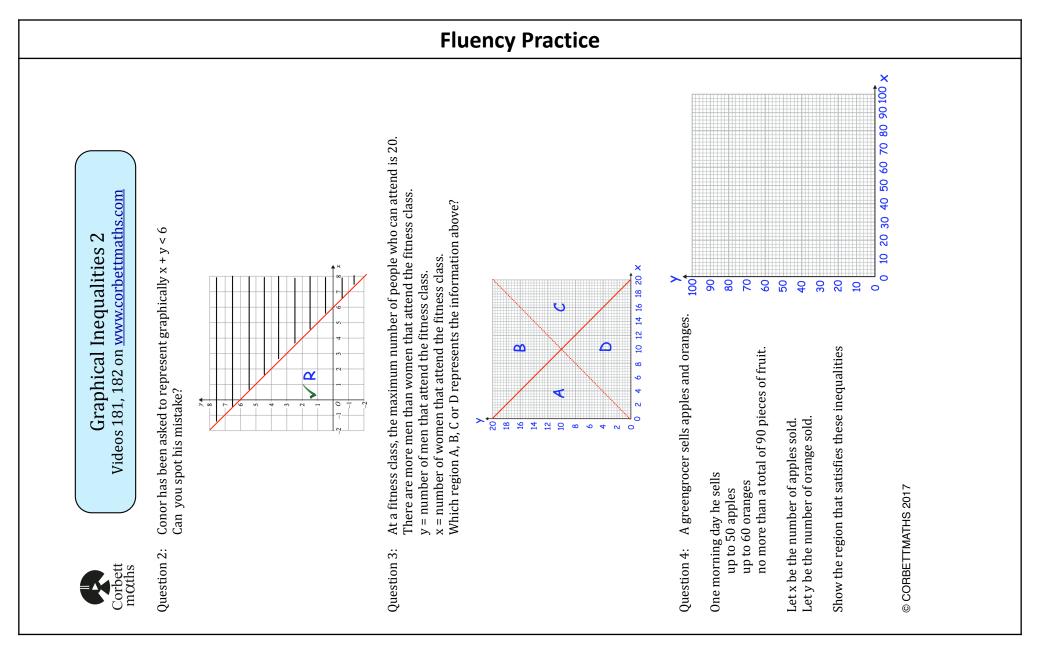

	Templates					
	* e		Ϋ́			
qualities 1 orbettmaths.com	1(c)	φ φ φ φ φ	1(f)	a 4 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		γ γ γ γ γ γ γ γ γ γ
Graphical Inequalities 1 Video 180 on <u>www.corbettmaths.com</u>	1(b)	γ 	1(e) 1(e)	1(h) 1	11(k) 11	
Corbett	Templates Question 1(a)		Question 1(d)	⁶ - 5 - 4 - 3 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	⁶ ⁵ ⁴ ³ ² ⁻¹ ⁻¹ ⁻¹ ⁻¹ ⁻¹ ⁻¹ ⁻¹ ⁻¹	





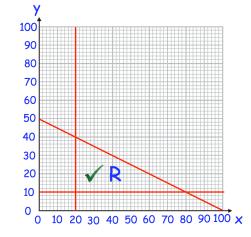






Graphical Inequalities 2

Videos 181, 182 on www.corbettmaths.com


Question 5: The region below shows information about the number first class passengers and the number of economy passengers on a flight.

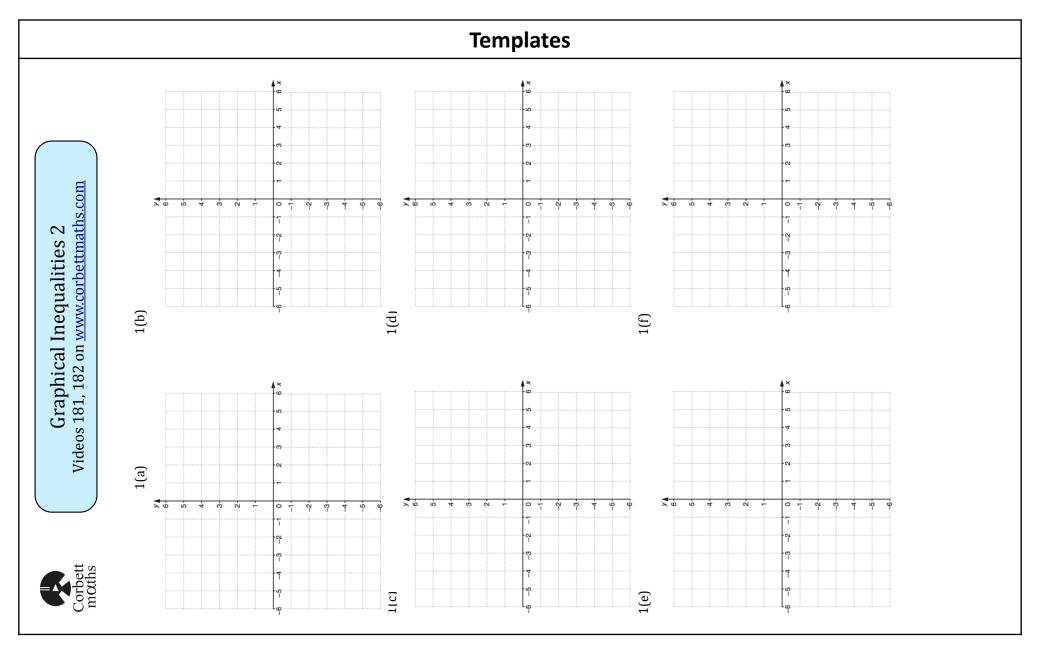
x = number of economy passengers and y = number of first class passengers

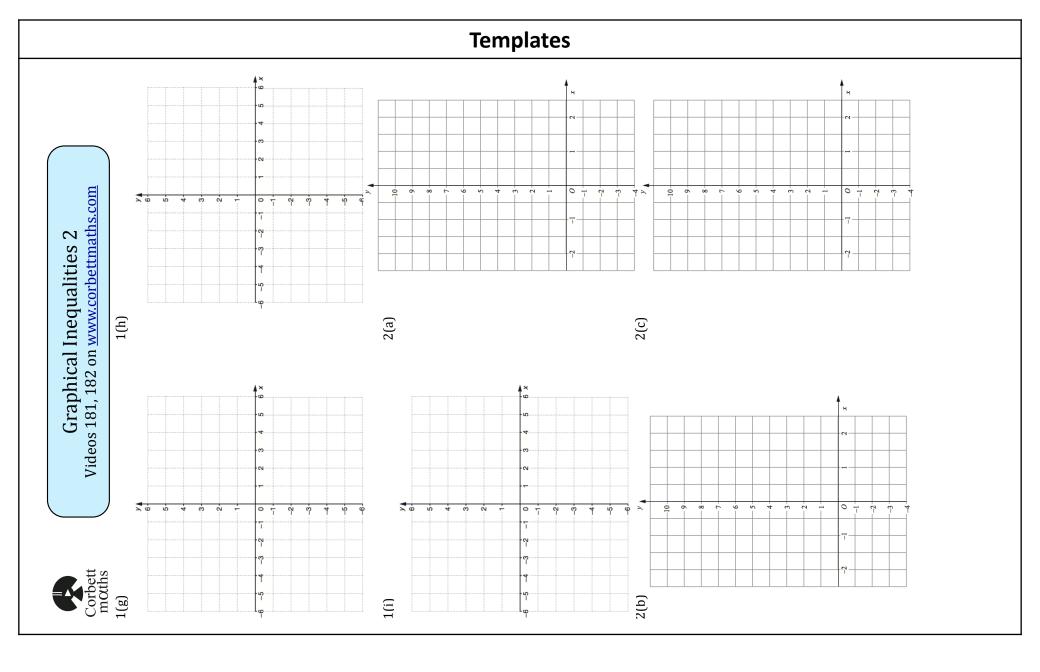
- (a) Can 15 first class and 60 economy passengers be on the flight?
- (b) Can 30 economy and 40 first class passenger be on the flight?

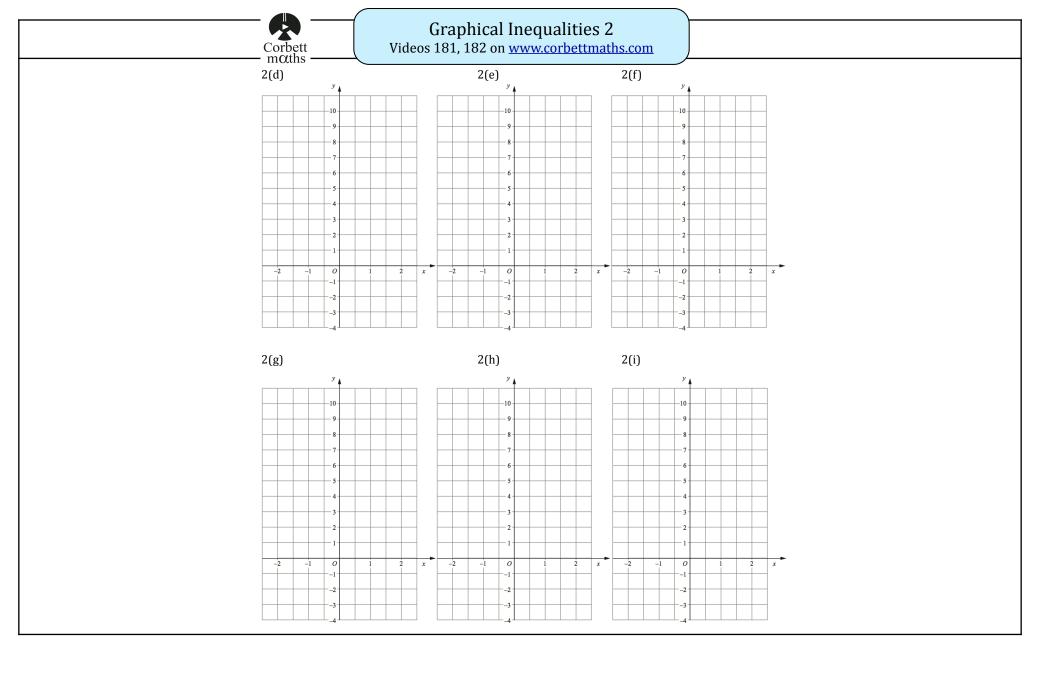
The profit made by the airline for each economy passenger is £90 and for each first class passenger is £200.

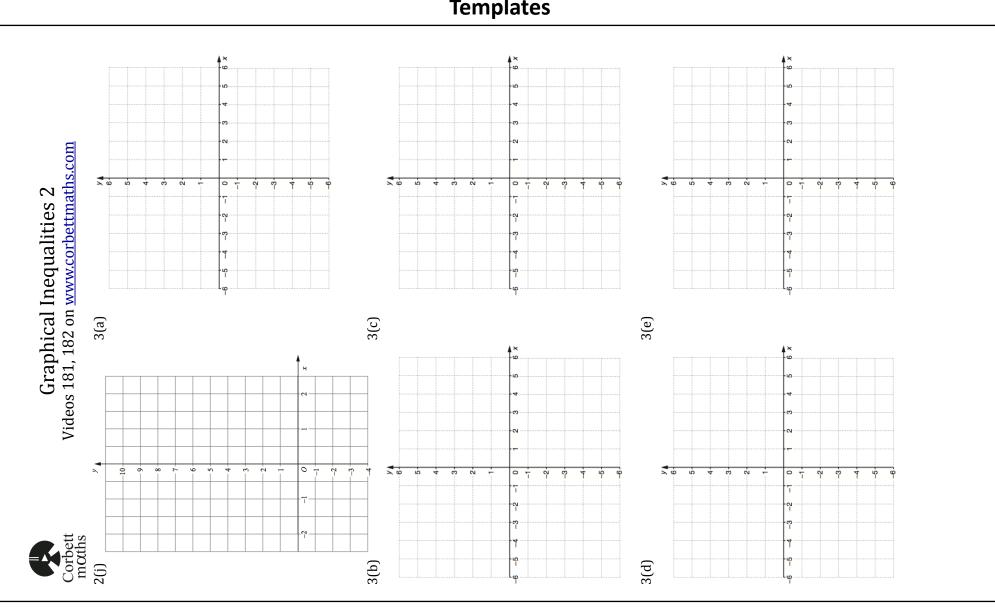
Corbett maths

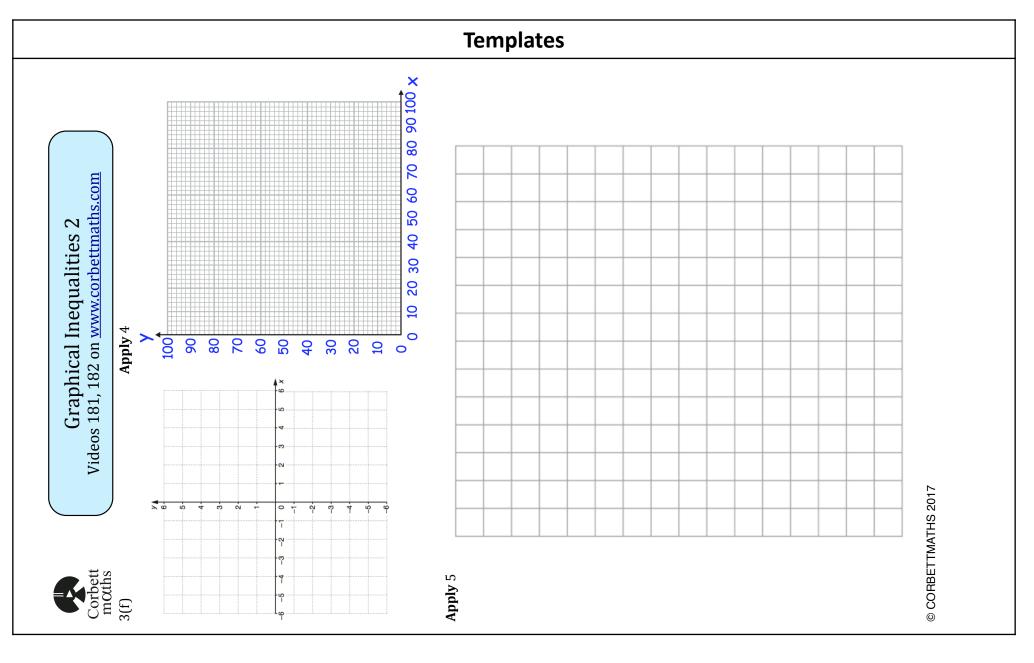
(c) What is the maximum profit the airline can make on one flight?


Question 6:A football stadium holds a maximum of 1000 fans.
Adult tickets cost £5 each and child tickets cost £2 each.
The football club needs to raise at least £3000 to cover costs.
The football club aims to sell at least one child ticket for two adult tickets sold
Let x = number of child tickets sold and y = number of adult tickets sold

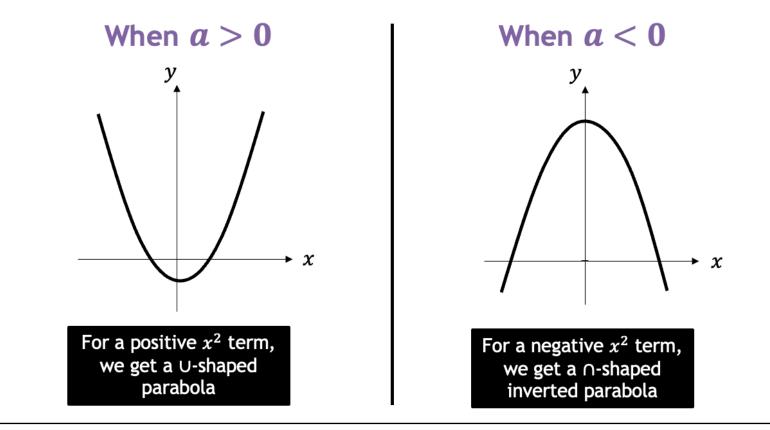

Explain why: (a) $x + y \le 1000$ (b) $2x + 5y \ge 3000$ (c) $y \le 2x$


(d) Represent this information on a graph.



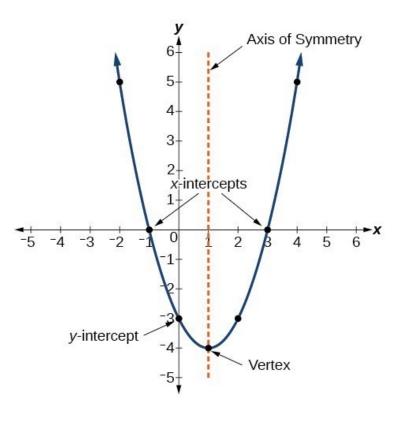


Extra Notes


5 Non-Linear Graphs

Quadratic Graphs

A quadratic graph is produced from an equation of the form


 $y = ax^2 + bx + c$

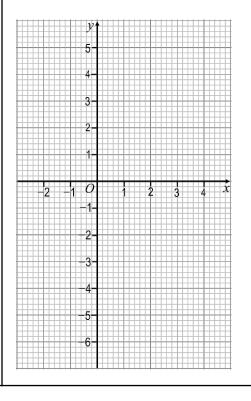
where a, b and c are constants and a is non-zero.

Interpreting Quadratic Graphs

- *y*-intercept where the graph intercepts the *y*-axis
- *x*-intercept or root or solution where the graph intercepts the *x*-axis
- Turning point or vertex or minimum/maximum where the graph stops decreasing and starts increasing or vice-versa

- a) Complete the table and draw the graph of $y = x^2 + 2x$ for x = -4 to x = 2
- b) Write down the equation of the line of symmetry of your graph
- c) Use your graph to find:
 - i) the value of y when x = 0.5ii) the values of x when y = 6
- Here is a table of values for $y = x^2 + 2x$.

x	-4	-3	-2	-1	0	1	2
y	8		0	-1			8

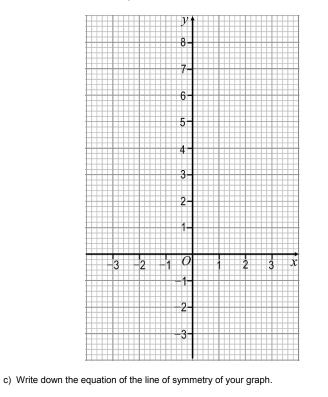

2 А a) Complete the table and draw the graph of $y = x^2 - 2x - 4$ for x = -2 to x = 4

Worked Example

- b) Write down the equation of the line of symmetry of your graph
- c) Write down the values of *x* where the graph crosses the *x*-axis

Here is a table of values for $y = x^2 - 2x - 4$.

x	-2	-1	0	1	2	3	4
y		-1	-4			-1	



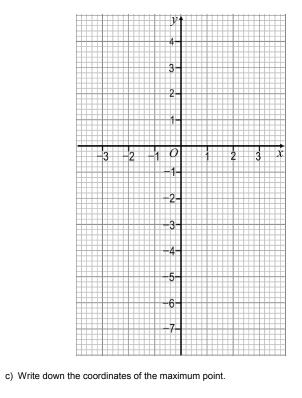
1. Here is a table of values for $y = x^2 - 2$.

x	-3	-2	-1	0	1	2	3
y	7		-1	-2			7

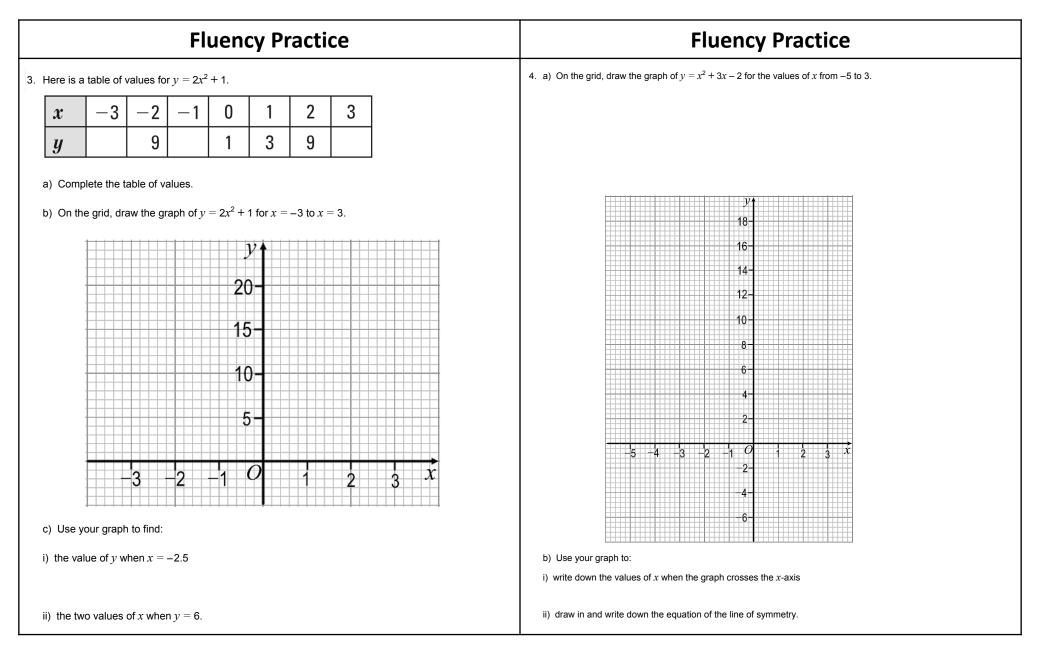
a) Complete the table of values.

b) On the grid, draw the graph of $y = x^2 - 2$ for x = -3 to x = 3.

d) Write down the coordinates of the minimum point.

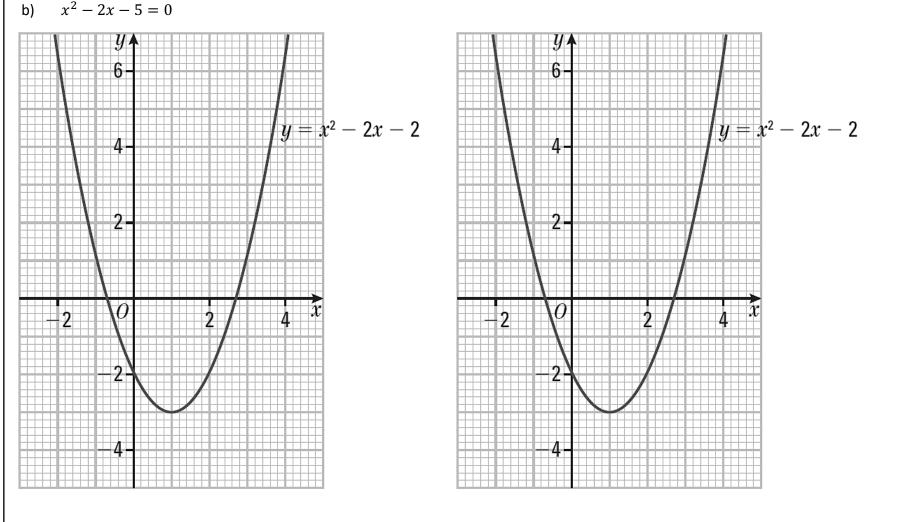

2. Here is the table of values for $y = 3 - x^2$.

x	-3	-2	-1	0	1	2	3
y	-6		2	3		-1	


Fluency Practice

a) Complete the table of values.

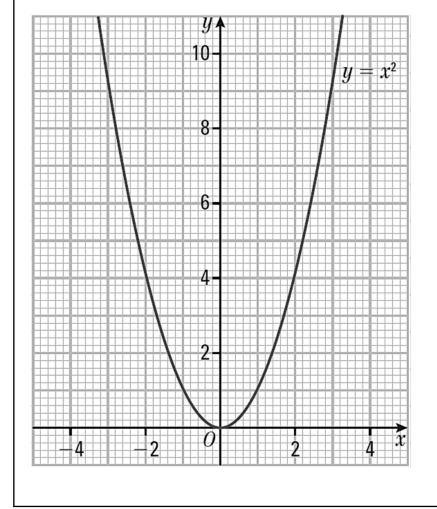
b) On the grid, draw the graph of $y = 3 - x^2$ for x = -3 to x = 3.

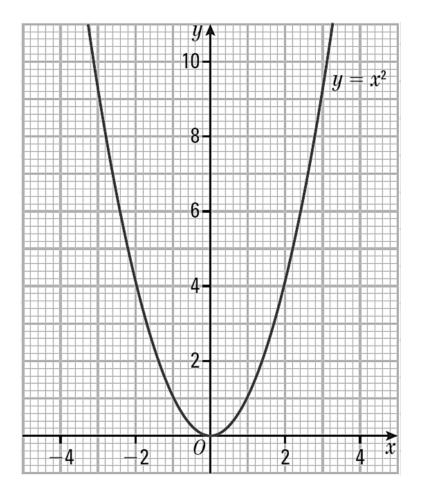


d) Write down the values of *x* where the graph crosses the *x*-axis.

Use this graph to solve these equations:

a) $x^2 - 2x - 2 = 0$ b) $x^2 - 2x - 5 = 0$



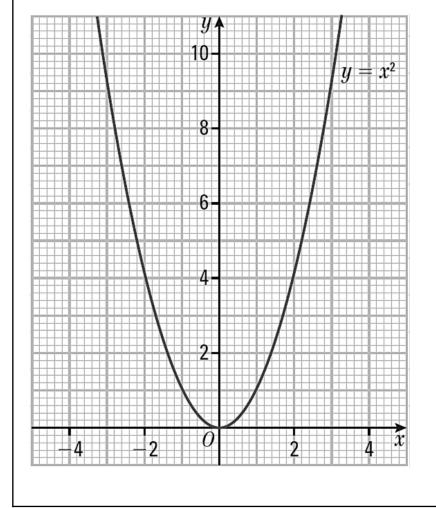

Use this graph to solve these equations:

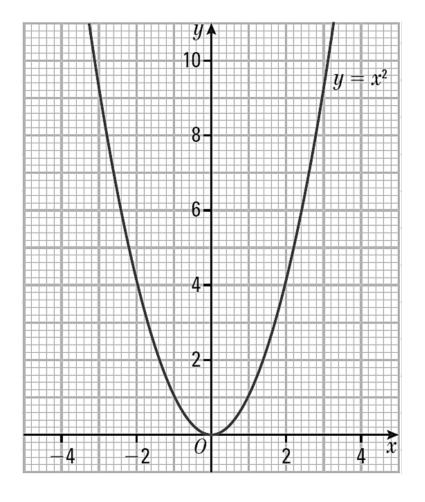
Use this graph to solve these equations:

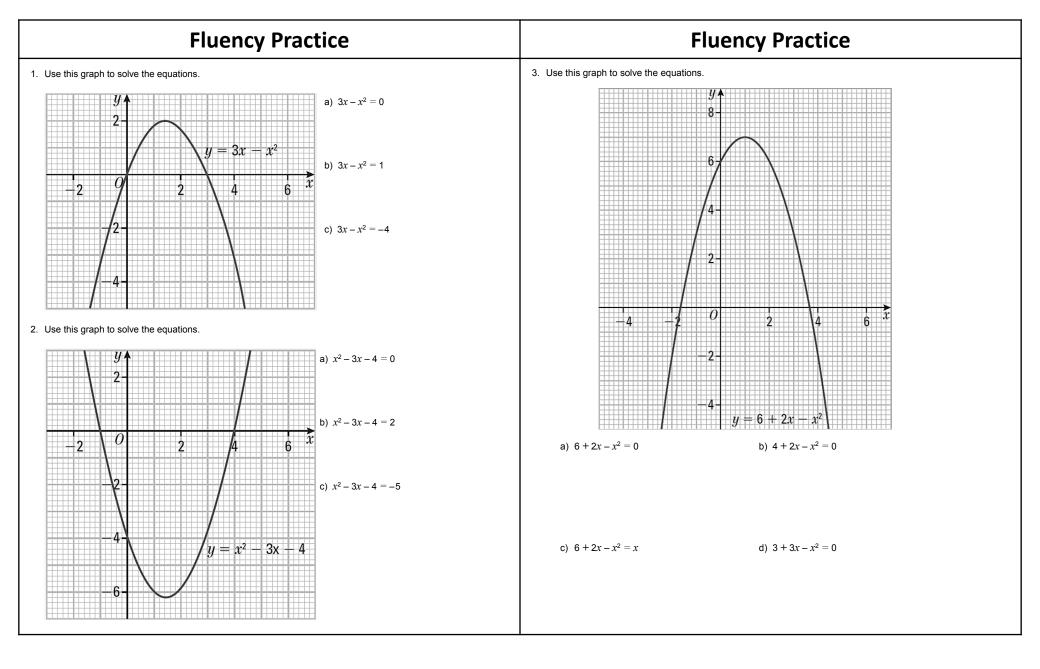
a)
$$x^2 = 2x + 3$$

b) $x^2 = x + 4$

b)
$$x^2 = x +$$



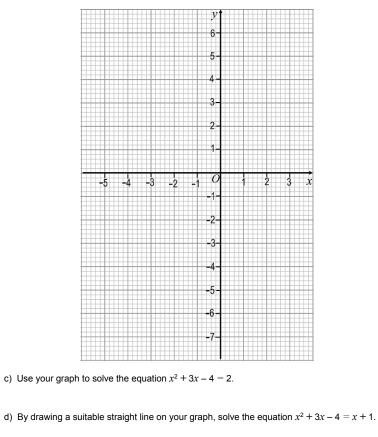



Use this graph to solve these equations:

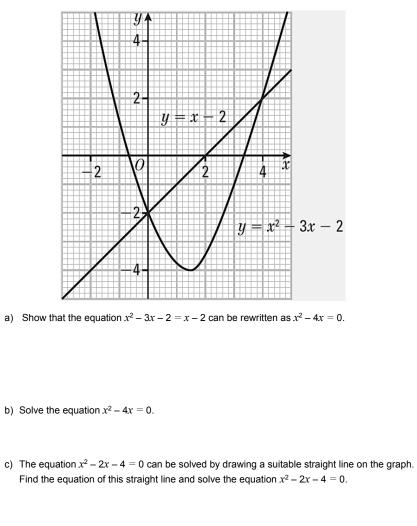
c)
$$x^{2} + x - 1 = 0$$

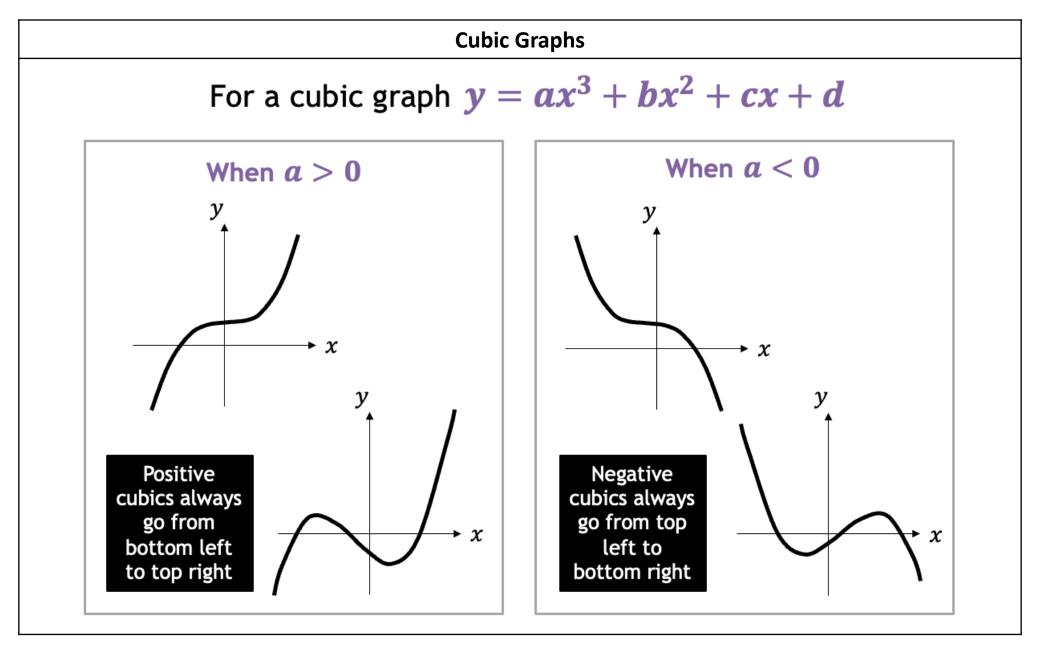
d) $x^{2} - 2x - 1 = 0$

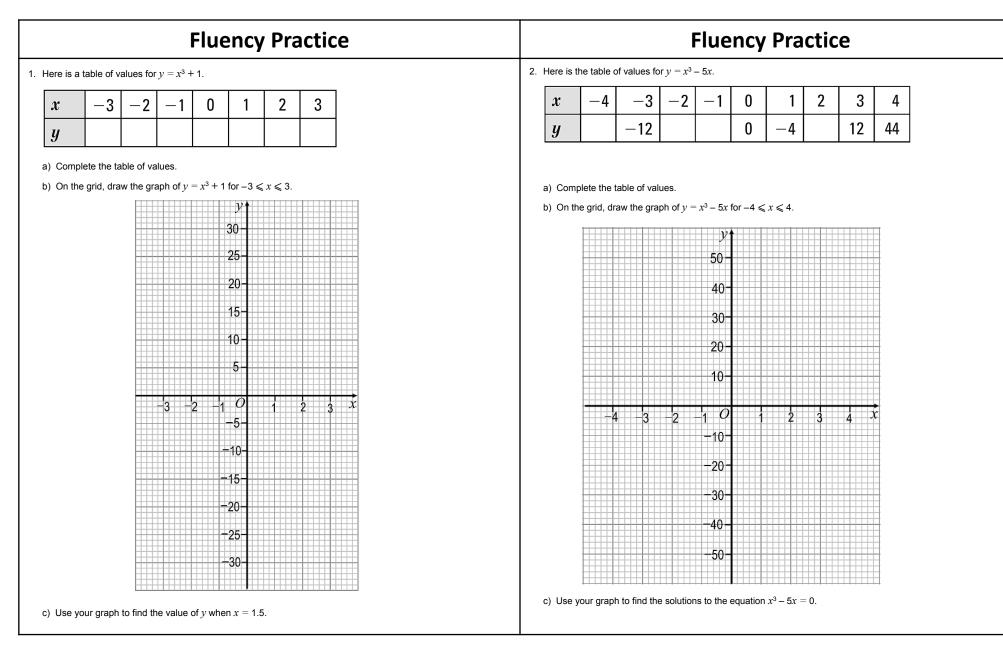
d)
$$x^2 - 2x - 1$$

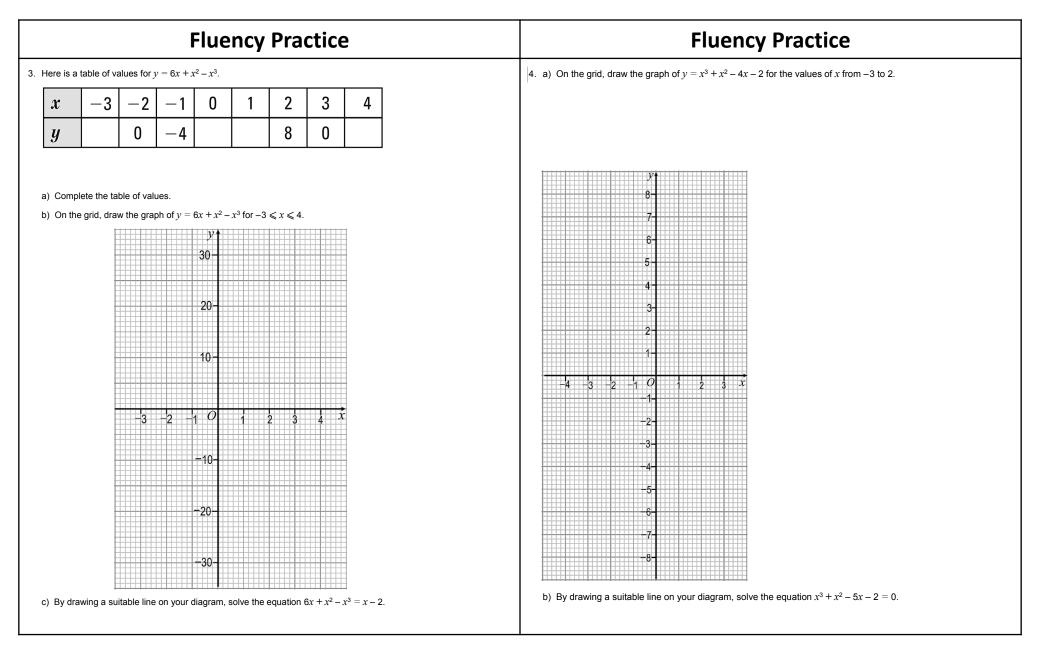

Fluency Practice

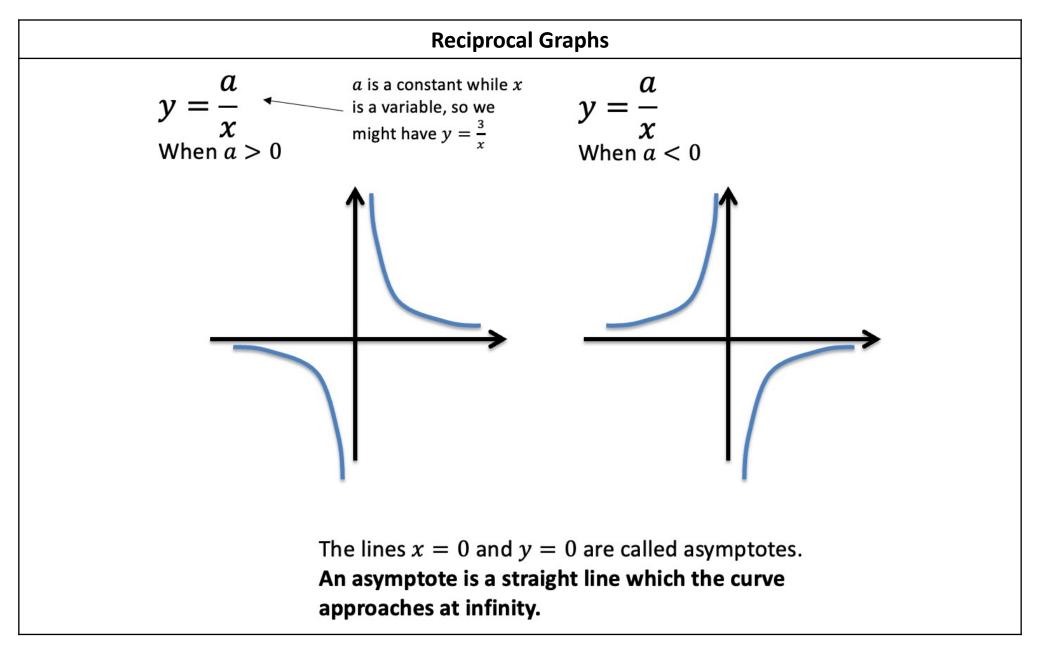
x	-5	-4	-3	-2	-1	0	1	2
y	6	0		-6		-4		


a) Complete the table of values.

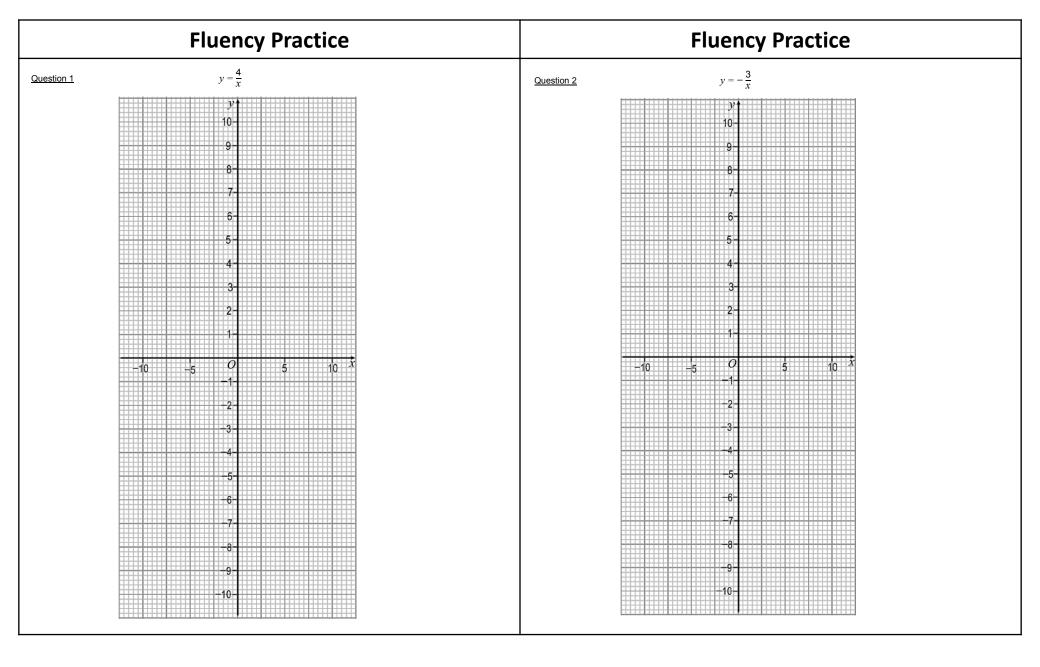

b) On the grid, draw the graph of $y = x^2 + 3x - 4$.

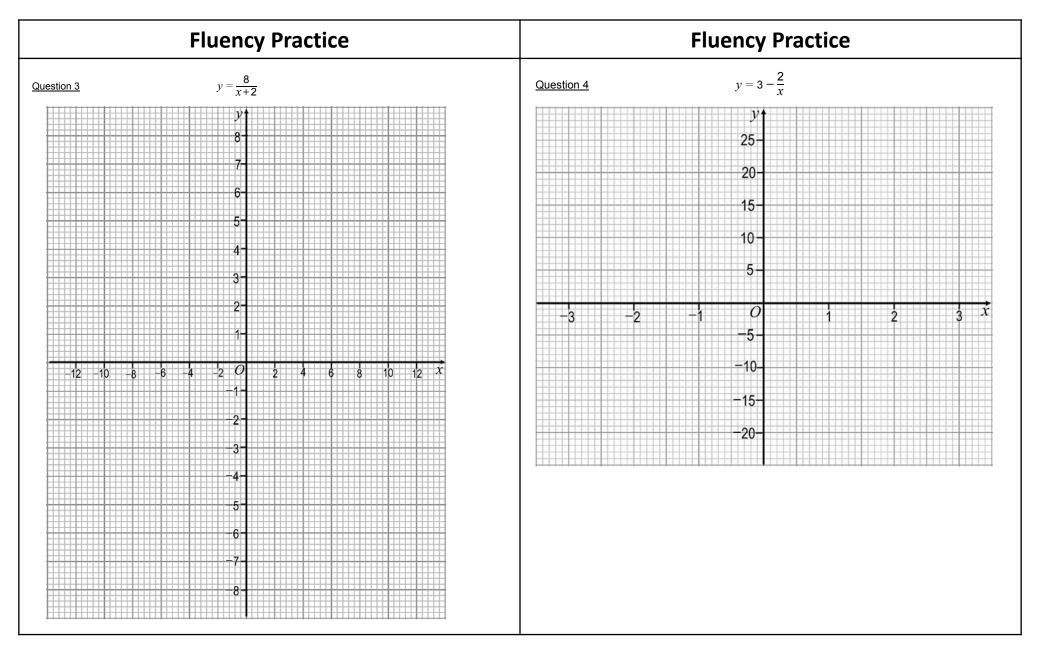

Fluency Practice

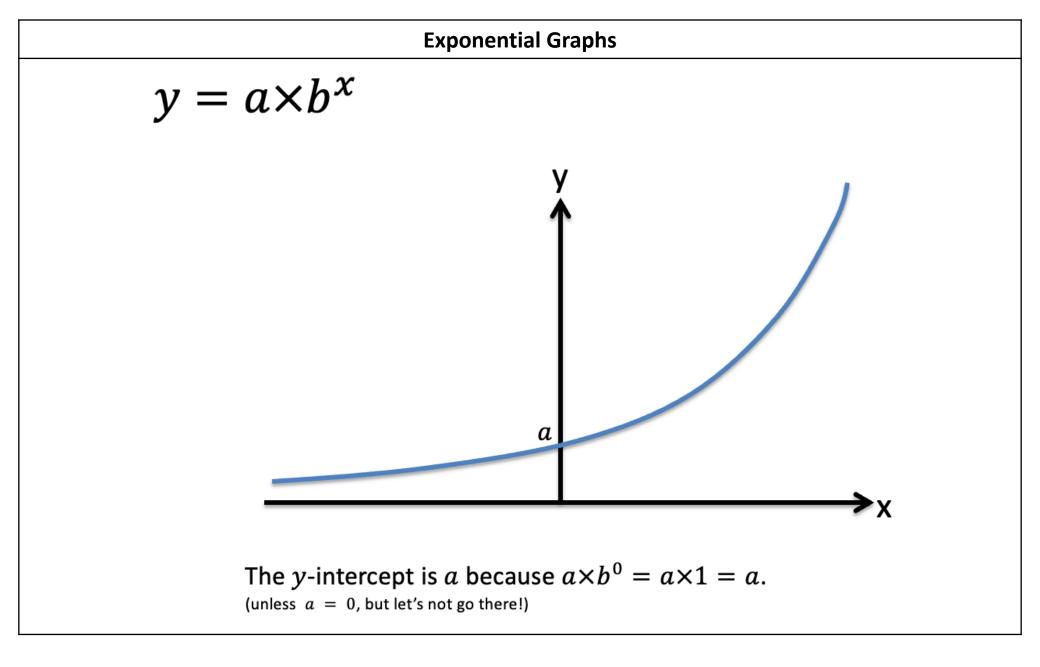

5. The graphs $y = x^2 - 3x - 2$ and y = x - 2 are shown below.

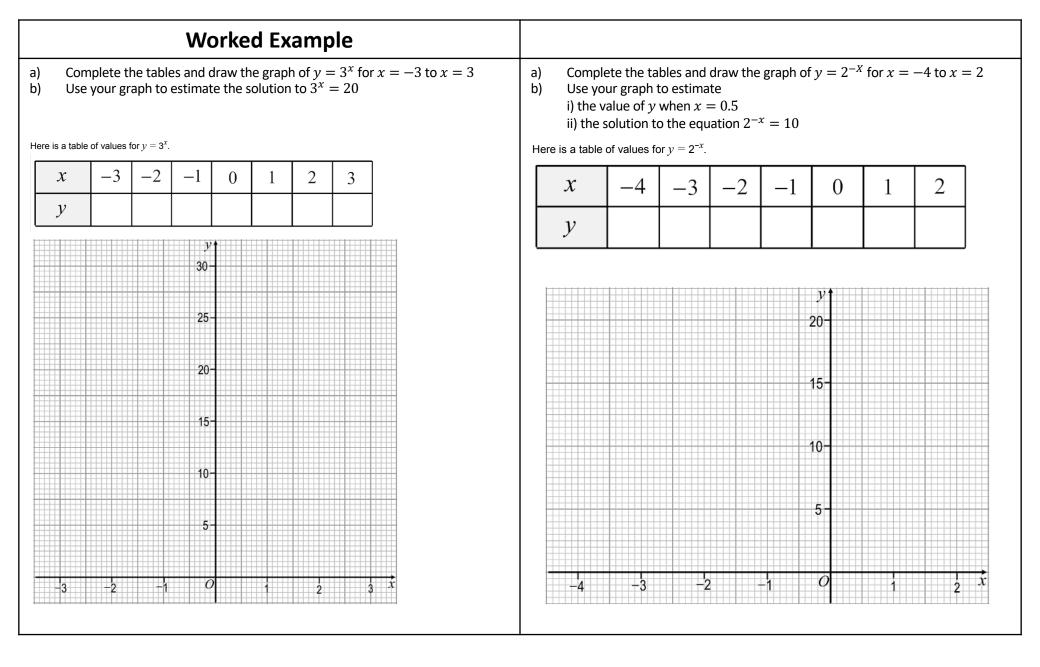


Worked Example	Worked Example
a) Complete the table and draw the graph of $y = x^3 - 4$ for $x = -4$ to $x = 4$ b) Use the graph to find the value of y when $x = 4$ Here is a table of values for $y = x^3 - 4$.	a) Complete the table and draw the graph of $y = x^3 - 4x^2 + 5$ for $x = -2$ to $x = 5$ b) Use your graph to find the solutions to: i) $x^3 - 4x^2 + 5 = 0$ ii) $x^3 - 4x^2 - x + 5 = 0$ Here is a table of values for $y = x^3 - 4x^2 + 5$.
x -4 -3 -2 -1 0 1 2 3 4	x -2 -1 0 1 2 3 4 5
<i>y</i>	y -19 5 -4 5
50- $40-$ $30-$ $20-$ $10-$ $10-$ -4 -3 -2 -1 0 1 2 3 4 x -4	30- 25- 20- 15- 10- 5-
-20- -30-	
-40-	-5-
-50-	-10-
-60-	-15- -20-
-70-	

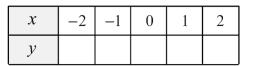




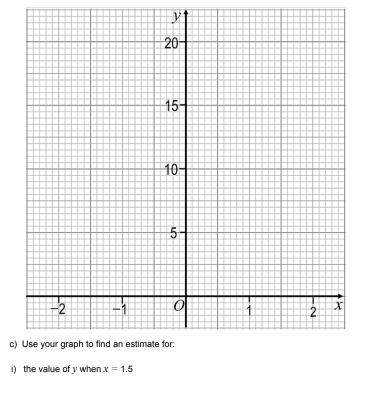

Worked Example	Worked Example
Complete the tables and draw the graph of $y = \frac{2}{x}$ for $x = -5$ to $x = 5$	Complete the tables and draw the graph of $y = -\frac{1}{x}$ for $x = -5$ to $x = 5$
Here is a table of values for $y = \frac{2}{x}$.	Here is a table of values for $y = -\frac{1}{x}$.
x 0.25 0.4 0.5 0.8 1 2 4 5	x 0.2 0.4 0.5 0.8 1 2 3 4 5
<i>y</i>	<i>y</i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x -0.2 -0.4 -0.5 -0.8 -1 -2 -3 -4 -5


					W	'ork	ked	Exa
complete the tables and draw the graph of $y = \frac{4}{x-1}$ for $x = -12$ to $x = 12$								
re	is a tabl	e of values	s for $y =$	$\frac{4}{x-1}$				
_	x	1.5	2	3	5	6	9	11
	У							
	x	0.5	0	-1	-3	-4	-7	-9
	<i>y</i>							
				8- 7-				
				6-				
				4-				
				2-				
	12 -10	-8 -6	-4 -2	1- 0	2 4	6 8	10 12	ż
	12 10			-1-			10 12	
				-3-				
				-4-				
				-6- -7-				
				-8-				

Fluency F	Fluency Practice											cy P	rac	tice				
1. Here are some table of values for $y = \frac{4}{x}$.	1. Here are some table of values for $y = \frac{4}{x}$.										for $y = \frac{1}{x}$	8 +2 [.]						
x 0.2 0.4 0.5 1	2 4	5	8	10		x	-12	-10	-7	-6	-4	-3	-1	0	2	3	6	8
y 10 4	2	0.8				у												
x -10 -8 -5 -4 -2 y	$=\frac{4}{x} \text{ for } -10 \leqslant x$ utions of $\frac{4}{x} = 4$	<i>c</i> ≤ 10. - <i>x</i> .	-0.4	-0.2	A [×] 4.	 c) For a) Co x y b) On c) Thi 	which mplete 3 your a s grapł	values the tab -2 dditiona	of x is jole of va	$y = \frac{8}{x+1}$	$\overline{2}$ not de $y = 3 - \frac{1}{5} - \frac{1}{5}$	efined? $\frac{2}{x}, x \neq 0.1$ n of $y =$ touchi	$\neq 0.$ 0.1 $= 3 - \frac{2}{x}$ ing there	for – 12 0.5	1 ≤ <i>x</i> ≤ 3	2	3 d asym	Dtotes.



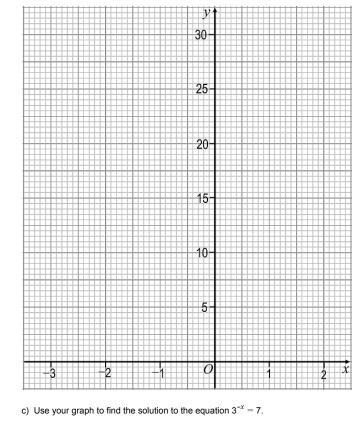
Fluency Practice


Fluency Practice

1. Here is a table of values for $y = 4^x$.

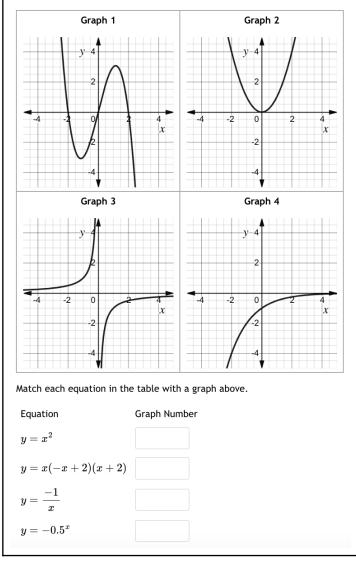
a) Complete the table of values.

b) On the grid, draw the graph of $y = 4^x$ for $-2 \le x \le 2$.

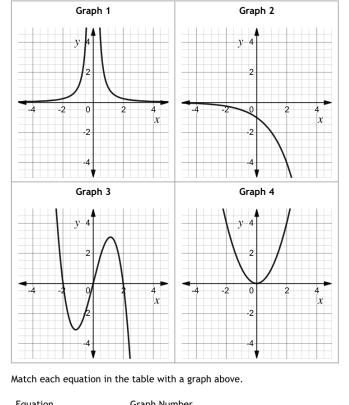

ii) the value of x when y = 11

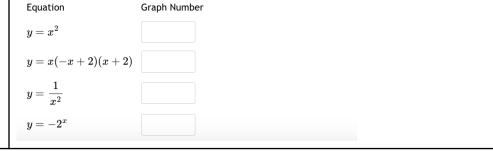
2. Here is the table of values for $y = 3^{-x}$.

x	-3	-2	-1	0	1	2
У						

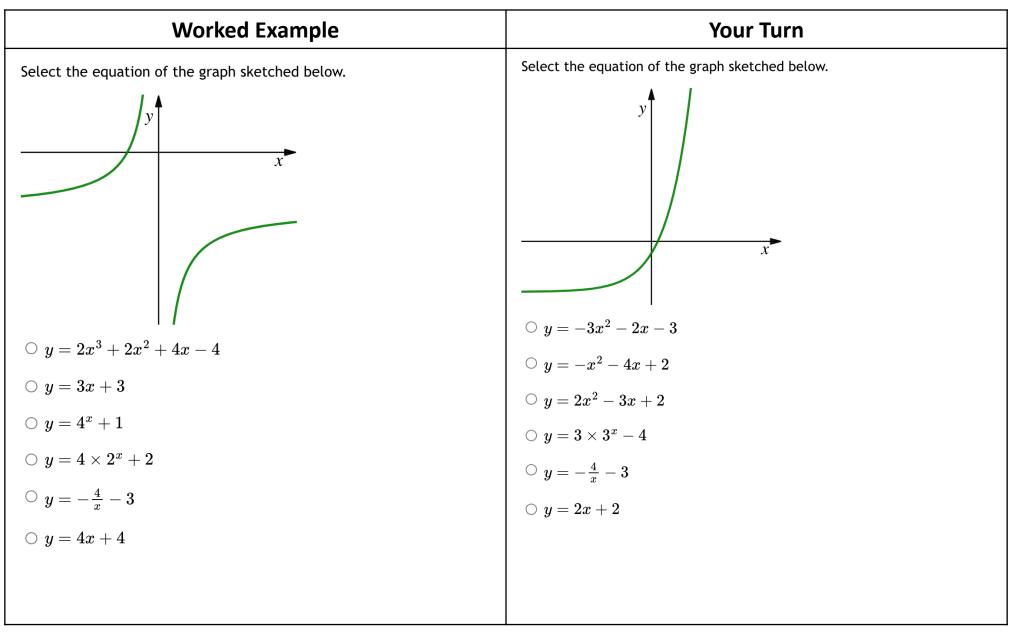

a) Complete the table of values.

b) On the grid, draw the graph of $y = 3^{-x}$ for $-3 \le x \le 2$.




Your Turn

Four graphs are sketched below.



Four graphs are sketched below.

Dr Frost 426b

Extra Notes